1.

2.

3.

4.

5.

CHEMISTRY KARNATAKA CET - 2024

1

KEY ANSWERS

1 2								
2	Α	16	С	31	Α	46	A & C	
	D	17	С	32	Α	47	С	
3	D	18	B	33	B	48	B	
4 5	A C	19 20	B D	34 35	<u>С</u> В	49 50	<u>С</u> В	
6		20	<u>р</u> С	36	B	51	B	
7	B	22	<u> </u>	37	<u> </u>	52	D	
8	D	23	В	38	С	53	С	
9	D	24	A	39	С	54	A	
10	D	25	A C	40 41	*	55 56	D B	
12	<u>A</u> D	20	<u> </u>	41	A D	57	B	
13	D	28	D	43	B	58	D	
14	С	29	D	44	B & D	59	С	
15	D	30	В	45	С	60	D	
C) SO ₂ is o MnO ₄ ⁻ i D) SO ₂ is r MnO ₄ ⁻ is	is reduced educed to s oxidised	SO_3^{-2} to MnO ₂ H ₂ S to MnO ₄	$D_2 \rightarrow 2Mn^{2+}$	+ 5SO ₄ ⁻² +				Ans. (A
	af the fall					ta iania li	rrduidaa 9	× ×
Which one			operties is ge onducting ir	-	not applicable	to ionic h	ydrides ?	
Which one A) Non-vo	olatile		conducting ir	-	not applicable	to ionic h	ydrides ?	Ans. (I
Which one (A) Non-vo (C) Crystal	olatile (lline]	(B) Non-c D) Volatil	onducting ir	n solid sta	<i>not</i> applicable ate		-	Ans. (I
Which one A) Non-vo C) Crystal Which one A) NaNO	olatile (lline] of the foll	(B) Non-c D) Volatil lowing nit (B) KNO ₃	conducting ir e rate will dec	n solid sta	<i>not</i> applicable ate to give NO ₂ or	n heating:	-	
Which one A) Non-vo C) Crystal Which one A) NaNO ₂ Solution: 4	olatile (lline) of the foll $_3$ (4LiNO ₃ —	(B) Non-c D) Volatil lowing nit (B) KNO ₃ $\rightarrow 2Li_2O^{-1}$	conducting ir e rate will dec	n solid sta compose (C) Rl	<i>not</i> applicable ate to give NO ₂ or bNO ₃	n heating:	?	
Which one A) Non-vo C) Crystal Which one A) NaNO Solution: 4	olatile (lline) of the foll $_3$ ($_4$ LiNO $_3$ — he followin	(B) Non-c D) Volatil lowing nit (B) KNO ₃ $\rightarrow 2Li_2O^{-1}$	conducting in e rate will dec $+4NO_2 + O_2$	n solid sta compose (C) Rl	not applicable ate to give NO_2 or bNO_3 ed?	n heating: C) Li	?	Ans. (I
Which one A) Non-vo C) Crystal Which one A) NaNO Solution: 4 Which of th A) CCl ₄	olatile (lline) of the foll ${}_{3}$ (${}_{4}$ LiNO ₃ — he followin	(B) Non-c D) Volatil lowing nit (B) KNO ₃ $\rightarrow 2Li_2O$ ng halides (B) SiCl ₄	conducting in e arate will dec $+ 4NO_2 + O_2$ s <i>cannot</i> be h	n solid sta compose (C) Rl nydrolyse	not applicable ate to give NO_2 or bNO_3 ed?	n heating: C) Li	? NO ₃	Ans. (I Ans. (I Ans. (A
Which one A) Non-vo C) Crystal Which one A) NaNO Solution: A Which of th A) CCl ₄	olatile (lline) of the foll ${}_{3}$ (${}_{4}$ LiNO ₃ — he followin Absence of	(B) Non-c D) Volatil lowing nit (B) KNO ₃ $\rightarrow 2Li_2O$ ng halides (B) SiCl ₄ f d-orbital	conducting in e rate will dec $+4NO_2 + O_2$ s <i>cannot</i> be h s in CCl ₄	n solid sta compose (C) Rl nydrolyse (C) G	not applicable ate to give NO_2 or bNO_3 ed? eCl_4	n heating: C) Li (D) S	? NO3 SnCl4	Ans. (I Ans. (A
Which one (A) Non-vo (C) Crystal Which one (A) NaNO Solution: 4 Which of the A) CCl ₄ Solution: 4 in the analy	olatile (lline) of the foll $_3$ ($_4$ LiNO ₃ — he followin Absence of ysis of III ;	(B) Non-c D) Volatil lowing nit (B) KNO ₃ $\rightarrow 2Li_2O^{-1}$ ng halides (B) SiCl ₄ f d-orbital group bas	conducting in e rate will dec $+4NO_2 + O_2$ s <i>cannot</i> be h s in CCl ₄ ic radicals of	n solid sta compose (C) Rl nydrolyse (C) G f salts, th	not applicable ate to give NO_2 or bNO_3 ed?	n heating: C) Li (D) S	? NO3 SnCl4	Ans. (I Ans. (A
Which one A) Non-vo C) Crystal Which one A) NaNO Solution: 4 Which of th A) CCl ₄ Solution: 4 n the analy	olatile (lline) of the foll $_3$ ($_4$ LiNO ₃ — he followin Absence of ysis of III ;	(B) Non-c D) Volatil lowing nit (B) KNO ₃ $\rightarrow 2Li_2O^{-1}$ ng halides (B) SiCl ₄ f d-orbital group bas	conducting in e rate will dec $+4NO_2 + O_2$ s <i>cannot</i> be h s in CCl ₄	n solid sta compose (C) Rl nydrolyse (C) G f salts, th	not applicable ate to give NO_2 or bNO_3 ed? eCl_4	n heating: C) Li (D) S	? NO3 SnCl4	Ans. (I Ans. (A
Which one A) Non-vo C) Crystal Which one A) NaNO Solution: 4 Which of th A) CCl ₄ Solution: 4 n the analy A) to incre	olatile (lline) of the foll $_3$ ($_4$ LiNO ₃ — he followin Absence of ysis of III ; ase the con	(B) Non-c D) Volatil lowing nit (B) KNO ₃ $\rightarrow 2Li_2O^{-1}$ ng halides (B) SiCl ₄ f d-orbital group bas ncentratio	conducting in e rate will dec $+4NO_2 + O_2$ s <i>cannot</i> be h s in CCl ₄ ic radicals of	n solid sta compose (C) Rl nydrolyse (C) G f salts, th ns.	not applicable ate to give NO_2 of bNO_3 ed? eCl_4	n heating: C) Li (D) S	? NO3 SnCl4	Ans. (I Ans. (A
Which one A) Non-vo C) Crystal Which one A) NaNO Solution: 4 Which of th A) CCl ₄ Solution: 4 n the analy A) to incre B) to precip	olatile lline of the foll dLiNO ₃ — he followin Absence of ysis of III g ase the con pitate the r	(B) Non-c (B) Non-c (D) Volatil lowing nit (B) KNO ₃ $\rightarrow 2Li_2O^{-1}$ ng halides (B) SiCl ₄ f d-orbital group bas ncentratio radicals of	conducting in e rate will dec $+4NO_2+O_2$ s <i>cannot</i> be h s in CCl ₄ ic radicals of n of OH ⁻ ior	n solid sta compose (C) Rl nydrolyse (C) G f salts, th ns.	not applicable ate to give NO_2 of bNO_3 ed? eCl_4	n heating: C) Li (D) S	? NO3 SnCl4	Ans. (I Ans. (A

Boscoss, III & IV Floor, ESSEL Centre, Near PVS Circle, Mangalore-3, Ph: 0824-4272728, 9972458537/CET-2024

6.	Solubility product of CaC_2O_4 at a given tem	perature in pure water is	$4 \times 10^{-9} \ (\text{mol } \text{L}^{-1})$	² . Solubility
	of CaC_2O_4 at the same temperature is			
	A) $6.3 \times 10^{-5} \text{ mol } \text{L}^{-1}$	(B) $2 \times 10^{-5} \text{ mol } \text{L}^{-1}$		
	·	(D) $6.3 \times 10^{-4} \text{ mol } \text{L}^{-1}$		Ans. (A)
	Solution : $K_{sp} = S^2 \implies 40 \times 10^{-10} = S^2 =$			
7.	For the reaction $PCl_5 \rightarrow PCl_3 + Cl_2$, rate and	d rate constant are $1.02 \times$	$10^{-4} \text{ mol } \text{L}^{-1} \text{ s}^{-1}$ an	$d 3.4 \times 10^{-5} s^{-1}$
	respectively at a given instant. The molar co	oncentration of PCl ₅ at th	at instant is :	
	A) 8.0 mol L^{-1} B) 3.0 mol L^{-1}	C) $0.2 \text{ mol } L^{-1}$	D) 2.0 mol L^{-1}	Ans. (B)
	Solution : rate = $k [PCl_5]^x$. Where $x = 1$			
8.	Which one of the following does not represe	ent Arrhenius equation?		
	A) $\log k = \log A - \frac{Ea}{2.303 RT}$	B) $\mathbf{k} = \mathbf{A} \mathbf{e}^{-\mathbf{E}\mathbf{a} / \mathbf{RT}}$		
		$\mathbf{F}_{\mathbf{A}}$		
	C) $\ln k = -\frac{Ea}{RT} + \ln A$	D) $k = A e^{Ea / RT}$		Ans. (D)
9.	Identify the incorrect statement:			
	A) Values of colligative properties of colloi	dal solution are of small	order compared to	values of true
	solution			
	B) Tyndall effect is observed only when dia	meter of the dispersed pa	articles is not much	n smaller than
	wavelength of incident light.			
	C) Colour of colloidal solution depends on t	the wavelength of light s	cattered by the disp	persed
	particles.			
	D) Brownian movement is due to balanced	bombardment of molecul	les of dispersion m	edium on
	colloidal particles.		-	Ans. (D)
	Solution: Unbalanced bombardment of mol	lecules of dispersion med	ium on colloidal p	articles.
10.	For the coagulation of positively charged hy	ydrated ferric-oxide sol, t	he flocculating po	wer of the
	ions is in the order :			
	A) $PO_4^{3-} > SO_4^{2-} > Cl^- > [Fe(CN)_6]^{4-}$	B) $Cl^{-} > SO_{4}^{2-} > PO_{4}^{3-} >$	$[Fe(CN)_6]^{4-}$	
	C) $SO_4^{2-} = Cl^- = PO_4^{3-} = [Fe(CN)_6]^{4-}$	D) $[Fe(CN)_6]^{4-} > PO_4^{3-}$	$> SO_4^{2-} > Cl^-$	Ans. (D)
	Solution: Larger the valency greater the flo	occulating power.		
11.	Gold sol is not a:			
	(A) Macromolecujar colloid	(B) Lyophobic colloid		
	(C) Multimolecular colloid	D) Negatively charged	colloid	Ans. (A)
12.	The incorrect statement about Hall-Heroult	,		
	A) Carbon anode is oxidised to CO and CO	-		
	B) Na_3AlF_6 helps to decrease the melting po			
	C) CaF ₂ helps to increase the conductivity c	-		
	D) Oxidation state of oxygen changes in the	-		Ans. (D)
13.	Select the correct statement:			
	A) Roasting involves heating the ore in the	absence of air.		
	(B) Calcination involves heating the ore abo			
	(C) Smelting involves heating the ore with s		nd flux below its n	nelting point.
	(D) Calcination of alcium carbonate is endo			Ans. (D)
	Boscoss, III & IV Floor, ESSEL Centre, Near PVS Circle, Mangalor	re-3, Ph: 0824-4272728, 9972458537/Cl	ET-2024	2

14.	NO_2 gas	s is:				
	(A) Col	ourless, n	eutral	(B) Colourless,	acidic	
	C) Brov	vn, acidic		(D) Brown, neu	tral	Ans. (C)
15.	Identify	the incom	rect statement	from the following:		
	A) Oxid	les of nitr	ogen in the atmo	osphere can cause depletion	of the ozone layer.	
	B) Ozor	ne absorbs	s the intense ultr	raviolet radiation of Sun.		
	C) Depl	etion of c	zone layer is be	cause of its chemical reaction	ns with chiorofluoro	alkanes.
	D) Ozoi	ne absorb	s infrared radiat	ion.		Ans. (D)
16.	The cor	rect decre	asing order of b	oiling point of hydrogen hal	ides is:	
	A) HF >	HCl > H	IBr > HI	B) $HI > BHr > J$	HCl > HF	
	C) HF >	HI > HE	Br > HCl	D) HI > HF > H	IBr > HCl	Ans. (C)
17.	The syn	thetically	produced radio	active noble gas by the collis	sion of $^{249}_{98}$ Cf with $^{48}_{20}$ Cf	Cais:
	A) Rado	on	B) Radium	C) Oganesson	D) Xenon	Ans. (C)
18.	The trar	sition ele	ement ($\approx 5\%$) pro	esent with lanthanoid metal i	n Misch metal is :	
	A) Mg		B) Fe	C) Zn	D) Co	Ans. (B)
19.	Match t	he follow	ing :			
	I. Zn^{2+}		i. d ⁸ configu	ration		
	II. Cu^{2+}		ii. Colourles	S		
	III. Ni ²⁺		iii. μ = 1.73	BM		
	Codes :					
	Ι	II	III			
	A) i	ii	<u>iii</u>			
	B) ii	iii	i			
	C) ii	i	iii			
	D) i	iii	ii			Ans. (B)
20.	Which o	of the foll	owing statement	ts related to lanthanoids is in	correct ?	
	A) Lant	hanoids a	re silvery white	soft metals		
	<i>,</i>		ws + 2 oxidation			
	C) Ce^{+4}	solutions	s are sidely used	as oxidizing agents in titrim	etric analysis	
	,			olution is due to d-d transitio		Ans. (D)
21.		-	_	eous solution of the complex	$x CrCl_3$. $6H_2O$ with ex	ccess of AgNO ₃ ,
	•	-	as obtained. The	-		
	· · · -		C1 ₃ 1. 3H ₂ O	(B) [Cr (H_2O) ₄		
	, <u> </u>	, -] C1 ₂ . H ₂ O	(D) $[Cr (H_2O)_6]$		Ans. (C)
	Solution	n: Numbe	er of moles of co	omplex CrCl ₃ . $6H_2O = \frac{100 \times 0}{1000}$	$\frac{3.1}{0} = 10^{-2}$	
	Number	of moles	of complex Ag	$Cl = \frac{2.86}{143.5} = 10^{-2}$ this indicat	tes 2 moles of chlorin	e outside the
	coordina	ation sphe	ere.			
22.	The con	nplex con	npounds [Co(NH	$H_3)_5SO_4$] Br and [Co(NH ₃) ₅ B	Br]So ₄ are	
	A) Geor	metrical is	somers	B) Geometrical	isomers	
	C) Opti	cal isome	rs	D) Ionisation is	omers	Ans. (D)
	Boscoss, I	II & IV Floor, I	ESSEL Centre, Near PVS	Circle, Mangalore-3, Ph: 0824-4272728, 9972	2458537/CET-2024	3

X, Y and Z respectively are

A) AgF, alcoholic KOH and benzene

B) HF, aqueous KOH and Na in dry ether

C) Hg₂F₂, alcoholic KOH and Na in dry ether

C) CoF₂, aqueous KOH and benzene

27. 8.8 g of monohydric alcohol added to ethyl magnesium iodide in ether liberates 2240 cm³ of ethane at STP. This monohydric alcohol when oxidised using pyridinium-chloropchromate, forms a carbonyl compound that answers silver mirror test (Tollens' test). The monohydric alcohol is:

Ans. (B)

A) butan-2-ol	B) 2, 2-dimethyl propan-1-ol
---------------	------------------------------

(C) pentan-2-ol (D) 2, 2-dimethyl ethan-1-ol

Solution:

Mass	Volume at STP
8.8 g	2240 cm^3
X	22400 cm^3

Where x = 88 g

Boscoss, III & IV Floor, ESSEL Centre, Near PVS Circle, Mangalore-3, Ph: 0824-4272728, 9972458537/CET-2024

Ans. (C)

4

			eacts with 20% H ₃ PO ₄ at C name of the compound		
	(A) But-1-ene	(B) But-2-ene	(C) Cyclobutane	D) 2-Methylpropene	e Ans. (D)
29.	PCC is :				
	A) $K_2Cr_2O_7 + Py$	ridine.			
	B) $CrO_3 + CHCl_3$				
	C) $CrO_3 + H_2SO_4$				
	· -	chromium trioxide w	ith pyridine + HCl		Ans. (D
30.	Propanone and Pr		1.2		Č,
	A) Position isome	-	B) Functional ison	mers	
	(C) Chain isomer		(D) Geometrical i	somers	Ans. (B)
31.	Sodium ethanoate	e on heating with soda	a lime gives X. Electrolys	sis of aqueous solution	of sodium
	ethanoate gives 'Y	Y'. 'X' and 'Y' respecti	vely are	-	
	A) Methane and l	Ethane	(B) Methane and	Methane	
	(C) Ethane and M	lethane	(D) Ethane and Et	thane	Ans. (A)
32.	But- 1-viie on rea	action with dil. H ₂ SO ₄	in presence of Hg ²⁺ ions	at 333 K gives:	
	\sim	∧ ∠CHO	O H	∧ ∠ ^{CHO}	
	A) 0	B)	C)	D)	Ans. (A)
33.	Biologically activ	ve adrenaline and ephe	edrine used to increase bl	lood pressure contain:	
	A) Primary amine	o group	B) Secondary ami	ino group	
	C) Tertiary amin	o group	(D) Quaternary ar	nmonium salt	Ans. (B)
34.		– Phonol –			
	Anilne $\xrightarrow{\text{NaNO}_2}_{\text{dil.HCl}}$	$P \xrightarrow{\text{Phenor}} Q$			
	Q is :				
	$(A) C_6H_5N_2Cl$		(B) ortho-hydroxy		
	C) para-hydroxya		(D) meta-hydroxy		Ans. (C)
35.		-	onsible for the developm	-	le
			ontrol of menstrual cycle		
	(A) Testosterone	B)Eradiol	(C) Insulin	(D) Thyroxine	Ans. (B)
36.		ge present between nu			
	(A) Phosphoester	-	B) Phosphodiester	-	
~-	(C) Amide linkag		(D) Glycosidic lir	ıkage	Ans. (B)
37.		ose and $\beta - D - (+) - g$			
20	(A) Enantomers	(B) Conformers	(C) Epimers	D)Anomers	Ans. (D)
38.		owing set of polymers		$(\ldots) \cap 1$	
	(i) Teflon (A) (i) and (ii)	(ii) Starch	(iii) Terylene	(iv) Orlon	
20		B) (ii) and (iii)	C) (iii) and (iv)	(D) (i) and (iv)	
39.	-		y polymerisation of Glyc	_	
	(A) Nylon 6	B) PHBV	C) Nylon 6	D) Nylon 6, 10	Ans. (C)

Boscoss, III & IV Floor, ESSEL Centre, Near PVS Circle, Mangalore-3, Ph: 0824-4272728, 9972458537/CET-2024

5

	CO NII is:			
40.	The compound			
	A) SucraloseB) Aspartame	(C) Saccharin	(D) Alitame	Ans. (*)
41.	Which one of the following is a cationic det	tergent?		
	A) Cetyltrimethylammonium bromide	B) Sodium dodecylber	nzene suiphonate	
	C) Dodecylbenzene suiphonic acid	D) Dodecylbenzene		Ans. (A)
42.	For which one of the following mixtures is	composition uniform thro	oughout?	
	A) Sand and water			
	B) Grains and pulses with stone			
	C) Mixture of oil and water			
	D) Dilute aqueous solution of sugar			Ans. (D)
43.	The energy associated with first orbit of He	⁺ is:		
		$(C) - 4.58 \times 10^{-18}$	D) $- 0.545 \times 10^{-10}$	⁻¹⁸ J Ans. (B)
	Solution: $E_n = -2.18 \times 10^{-18} \text{ J} \times \frac{Z^2}{n^2} $	$(1)^{-18} J \times \frac{2^2}{1^2}$		
44.	A metalloid is:	1		
	A) Bi B) Sb	(C) P	(D) Se Ar	ns. (B)&(D)
45.	A pair of isoelectronic species having bond			
10.	(A) N_2 CO (B) N_2 , NO ⁺	C) O_2^{2-}, F_2	(D) CO, NO^+	Ans. (C)
46.	Identify the wrong relation for real gases:	, 2 . 2		
101	A) $Z = \frac{V_{\text{ideal}}}{V_{\text{ideal}}}$	B) $p_{ideal} = p_{real} + \frac{an^2}{V^2}$		
	$(X) \ L - \frac{V_{real}}{V_{real}}$	v		
	(C) $V_{real} = V_{ideal} - nb$	$(D)\left(p+\frac{a}{V^2}\right)(V-b) =$	RT Ans	. (A) & (C)
17	Enous the diagnose	(v)		
47.	From the diagram $\Delta H_1 = +10 J_{2B}$			
	A = +25 J			
	$A \xrightarrow{\Delta H_1 = +10 \text{ J}} 2 \text{ B}$ $\Delta H_2 = +25 \text{ J}$			
	2			
	$\Delta_{\rm r}$ H for the reaction C \rightarrow A is:	C) 251	(D) + 15 I	
10		C) $-35J$		
48.	Vapour pressure of a solution containing 18 (Vapour pressure of pure victor at $100^{\circ}C = 10^{\circ}$		g of water at 100 C	J 18 .
	(Vapour pressure of pure water at $100^{\circ}C = 7$		(D) 2207.6 tom	Ang (D)
		(C) 7.6 torr	(D) 3207.6 torr	Ans. (B)
	Solution: $\frac{p^0 - p}{p^0} = \frac{w_2 / M_2}{w_1 / M_1} \Rightarrow \frac{760 - p}{760} = \frac{0.1}{10}$			
49.	A mixture of phenol and aniline shows nega	ative deviation from Rao	uilt's law. This is o	lue to the
	formation of:			
	(A) Polar covalent bond	(B) Non-polar covalen	t bond	
	C) Intermolecular Hydrogen bond	(D) intramolecuthr Hy		Ans. (C)
50.	Which one of the following pairs will show	· · ·	-	. *
	(A) Water - HCl	B) Benzene - Methano		
	(C) Water-HNO ₃	(D) Acetone – Chlorof	form	Ans. (B)
	Boscoss, III & IV Floor, ESSEL Centre, Near PVS Circle, Mangalor	re-3, Ph: 0824-4272728, 9972458537/CI	ET-2024	6

51.	How many Coulon	bs are required to oxidis	se 0.1 mole of H_2O to or	xygen?	
	A) 1.93×10^5 C	B) $1.93 \times 10^4 \mathrm{C}$	C) 3.86×10^4 C	D) 965×10^3 C	C Ans. (B)
	Solution: 1 mole –	2 × 96500 C			
	0.1 -	?			
	= 19300	С			
52.	A current of 3 A is	passed through a molter	a calcium salt for 1 hr 47	7 min 13 sec. Th	e mass of
		is (Molar mass of $Ca = 4$			
	(A) 6.0 g	(B) 2.0 g	C) 8.0	D) 4.0 g	Ans. (D)
	Solution: $W = Z \times$	I×t			
53.	The value of 'A' in	the equation $\lambda_{\rm m} = \lambda_{\rm m}^{\rm o} - A$	\sqrt{C} is same for the pair		
	A) NaCl and CaCl ₂	B)CaC1 ₂ and MgSO ₄	C)NaCl and KBr	D)MgCl ₂ and	NaCl Ans. (C)
54.	For the reaction, A	\rightleftharpoons B, E _a = 50 kJ mo1 ⁻¹	and $\Delta H = -20 \text{ kJ mol}^{-1}$. When a catalys	t is added,
	E_a decreases by 10	kJ mol ^{-1} . What is the E _a	for the backward reaction	on in the presend	ce of catalyst?
	A) 60 kJ mol ⁻¹	B) 40 kJ mol ⁻¹	C) 70 kJ mol ⁻¹	D) 20 kJ mol ⁻	¹ Ans. (A)
55.	The first chlorinate	d organic insecticide pre	pared is :		
	(A) Gammexane	(B) Chloroform	C) COCl ₂	D) DDT	Ans. (D)
56.	Which of the follow	ving crystals has the unit	t cell such that $a = b \neq c$	and $\alpha = \beta = 90^{\circ}$	$, \gamma = 120^{\circ}?$
	(A) Zinc blende		B) Graphite		
	(C) Cinnabar		(D) Potassium dichro	omate Ans.	(B)
57.	MnO exhibits:				
	(A) Ferrimagnetism	1	B) Antiferromagnetis	sm	
	C) Ferromagnetism	I	D) Paramagnetism	Ans.	(B)
58.	The number of ator	ns in 4.5 g of a face-cent	tred cubic-crystal with e	edge length 300 p	om is:
	(Given density $= 10$	0 g cm ⁻³ and $N_A = 6.022$	2×10^{23})		
	(A) $6.6 \times 10^2 0$	(B) 6.6×10^{23}	(C) 6.6×10^{19}	D) 6.6×10^{22}	Ans. (D)
	Solution: $d = \frac{Z \times N}{a^3 \times N}$	$\frac{M}{N_{A}}$ where z = 4			
59.		compound on complete	combustion produced () 22 σ of CO ₂ T	ne
57.		the given organic compo	-		
	(A) 25	(B) 50	C) 12.5	(D) 87.5	Ans. (C)
60.		ice of reactions, identify	,		1 m s. (C)
00.		$- \operatorname{CH}_2 \xrightarrow{\mathbb{Q}} \operatorname{CH}_2 = \operatorname{CH} - \operatorname{Br}$			
		l Br			
	A) Br ₂ , Ale. KOH,	NaOH, Al ₂ O.			
	B) HBr, Alc. KOH	, CaC ₂ , KMnO ₄			
	C) HBr, Alc. KOH	, NaNH ₂ , Red hot iron tu	ıbe		
	D) Br ₂ , Alc. KOR,	NaNH ₂ , Red hot iron tub	be		Ans. (D)

7