KEY ANSWERS

1	\mathbf{A}	16	\mathbf{C}	31	\mathbf{A}	46	\mathbf{A} \& C
2	\mathbf{D}	17	\mathbf{C}	32	\mathbf{A}	47	\mathbf{C}
3	\mathbf{D}	18	\mathbf{B}	33	\mathbf{B}	48	\mathbf{B}
4	\mathbf{A}	19	\mathbf{B}	34	\mathbf{C}	49	\mathbf{C}
5	\mathbf{C}	20	\mathbf{D}	35	\mathbf{B}	50	\mathbf{B}
6	\mathbf{A}	21	\mathbf{C}	36	\mathbf{B}	51	\mathbf{B}
7	\mathbf{B}	22	\mathbf{D}	37	\mathbf{D}	52	\mathbf{D}
8	\mathbf{D}	23	\mathbf{B}	38	\mathbf{C}	53	\mathbf{C}
9	\mathbf{D}	24	\mathbf{A}	39	\mathbf{C}	54	\mathbf{A}
10	\mathbf{D}	25	\mathbf{A}	40	$*$	55	\mathbf{D}
11	\mathbf{A}	26	\mathbf{C}	41	\mathbf{A}	56	\mathbf{B}
12	\mathbf{D}	27	\mathbf{B}	42	\mathbf{D}	57	\mathbf{B}
13	\mathbf{D}	28	\mathbf{D}	43	\mathbf{B}	58	\mathbf{D}
14	\mathbf{C}	29	\mathbf{D}	44	\mathbf{B} \& D	59	\mathbf{C}
15	\mathbf{D}	30	\mathbf{B}	45	\mathbf{C}	60	\mathbf{D}

[^0]1. In the reaction between moist SO_{2} and acidified permanganate solution :
A) SO_{2} is oxidised to SO_{4}^{2-}
MnO_{4}^{-}is reduced to Mn^{2+}
B) SO_{2} is reduced to S
MnO_{4}^{-}is oxidised to MnO_{4}
C) SO_{2} is oxidised to SO_{3}^{-2}
MnO_{4}^{-}is reduced to MnO_{2}
D) SO_{2} is reduced to $\mathrm{H}_{2} \mathrm{~S}$
MnO_{4}^{-}is oxidised to MnO_{4}
Ans. (A)
Solution: $2 \mathrm{MnO}_{4}^{-}+2 \mathrm{H}_{2} \mathrm{O}+5 \mathrm{SO}_{2} \rightarrow 2 \mathrm{Mn}^{2+}+5 \mathrm{SO}_{4}^{-2}+4 \mathrm{H}^{+}$
2. Which one of the following properties is generally not applicable to ionic hydrides ?
(A) Non-volatile
(B) Non-conducting in solid state
(C) Crystalline
D) Volatile

Ans. (D)
3. Which one of the following nitrate will decompose to give NO_{2} on heating?
(A) NaNO_{3}
(B) KNO_{3}
(C) RbNO_{3}
C) LiNO_{3}

Ans. (D)
Solution: $4 \mathrm{LiNO}_{3} \xrightarrow{\Delta} 2 \mathrm{Li}_{2} \mathrm{O}+4 \mathrm{NO}_{2}+\mathrm{O}_{2}$
4. Which of the following halides cannot be hydrolysed?
A) CCl_{4}
(B) SiCl_{4}
(C) GeCl_{4}
(D) SnCl_{4}
Ans. (A)

Solution: Absence of d-orbitals in CCl_{4}
5. In the analysis of III group basic radicals of salts, the purpose of adding $\mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{s})}$ to $\mathrm{NH}_{4} \mathrm{OH}$ is:
A) to increase the concentration of OH^{-}ions.
B) to precipitate the radicals of group IV and V.
C) to suppress the dissociation of $\mathrm{NH}_{4} \mathrm{OH}$.
D) to introduce Cl^{-}ions.

Ans. (C)
6. Solubility product of $\mathrm{CaC}_{2} \mathrm{O}_{4}$ at a given temperature in pure water is $4 \times 10^{-9}\left(\mathrm{~mol} \mathrm{~L}^{-1}\right)^{2}$. Solubility of $\mathrm{CaC}_{2} \mathrm{O}_{4}$ at the same temperature is
A) $6.3 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1}$
(B) $2 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1}$
C) $2 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}$
(D) $6.3 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}$

Ans. (A)
Solution: $\mathrm{K}_{\mathrm{sp}}=\mathrm{S}^{2} \Rightarrow 40 \times 10^{-10}=\mathrm{S}^{2} \quad \Rightarrow \mathrm{~S}=6.3 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1}$
7. For the reaction $\mathrm{PCl}_{5} \rightarrow \mathrm{PCl}_{3}+\mathrm{Cl}_{2}$, rate and rate constant are $1.02 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$ and $3.4 \times 10^{-5} \mathrm{~s}^{-}$ respectively at a given instant. The molar concentration of PCl_{5} at that instant is :
A) $8.0 \mathrm{~mol} \mathrm{~L}^{-1}$
B) $3.0 \mathrm{~mol} \mathrm{~L}^{-1}$
C) $0.2 \mathrm{~mol} \mathrm{~L}^{-1}$
D) $2.0 \mathrm{~mol} \mathrm{~L}^{-1}$

Ans. (B)
Solution : rate $=\mathrm{k}\left[\mathrm{PCl}_{5}\right]^{\mathrm{x}}$. Where $\mathrm{x}=1$
8. Which one of the following does not represent Arrhenius equation?
A) $\log \mathrm{k}=\log \mathrm{A}-\frac{\mathrm{Ea}}{2.303 \mathrm{RT}}$
B) $\mathrm{k}=\mathrm{A} \mathrm{e}^{-\mathrm{Ea} / \mathrm{RT}}$
C) $\ln \mathrm{k}=-\frac{\mathrm{Ea}}{\mathrm{RT}}+\ln \mathrm{A}$
D) $k=A e^{E a / R T}$

Ans. (D)
9. Identify the incorrect statement:
A) Values of colligative properties of colloidal solution are of small order compared to values of true solution
B) Tyndall effect is observed only when diameter of the dispersed particles is not much smaller than wavelength of incident light.
C) Colour of colloidal solution depends on the wavelength of light scattered by the dispersed particles.
D) Brownian movement is due to balanced bombardment of molecules of dispersion medium on colloidal particles.

Ans. (D)
Solution: Unbalanced bombardment of molecules of dispersion medium on colloidal particles.
10. For the coagulation of positively charged hydrated ferric-oxide sol, the flocculating power of the ions is in the order :
A) $\mathrm{PO}_{4}^{3-}>\mathrm{SO}_{4}^{2-}>\mathrm{Cl}^{-}>\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$
B) $\mathrm{Cl}^{-}>\mathrm{SO}_{4}^{2-}>\mathrm{PO}_{4}^{3-}>\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$
C) $\mathrm{SO}_{4}^{2-}=\mathrm{Cl}^{-}=\mathrm{PO}_{4}^{3-}=\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$
D) $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}>\mathrm{PO}_{4}^{3-}>\mathrm{SO}_{4}^{2-}>\mathrm{Cl}^{-}$

Ans. (D)
Solution: Larger the valency greater the flocculating power.
11. Gold sol is not a:
(A) Macromolecujar colloid
(B) Lyophobic colloid
(C) Multimolecular colloid
D) Negatively charged colloid

Ans. (A)
12. The incorrect statement about Hall-Heroult process is:
A) Carbon anode is oxidised to CO and CO_{2}.
B) $\mathrm{Na}_{3} \mathrm{AlF}_{6}$ helps to decrease the melting point of the electrolyte.
C) CaF_{2} helps to increase the conductivity of the electrolyte
D) Oxidation state of oxygen changes in the overall cell reaction.

Ans. (D)
13. Select the correct statement:
A) Roasting involves heating the ore in the absence of air.
(B) Calcination involves heating the ore above its melting point.
(C) Smelting involves heating the ore with suitable reducing agent and flux below its melting point.
(D) Calcination of alcium carbonate is endothermic.
14. NO_{2} gas is:
(A) Colourless, neutral
(B) Colourless, acidic
C) Brown, acidic
(D) Brown, neutral

Ans. (C)
15. Identify the incorrect statement from the following:
A) Oxides of nitrogen in the atmosphere can cause depletion of the ozone layer.
B) Ozone absorbs the intense ultraviolet radiation of Sun.
C) Depletion of ozone layer is because of its chemical reactions with chiorofluoro alkanes.
D) Ozone absorbs infrared radiation.

Ans. (D)
16. The correct decreasing order of boiling point of hydrogen halides is:
A) $\mathrm{HF}>\mathrm{HCl}>\mathrm{HBr}>\mathrm{HI}$
B) $\mathrm{HI}>\mathrm{BHr}>\mathrm{HCl}>\mathrm{HF}$
C) $\mathrm{HF}>\mathrm{HI}>\mathrm{HBr}>\mathrm{HCl}$
D) $\mathrm{HI}>\mathrm{HF}>\mathrm{HBr}>\mathrm{HCl}$

Ans. (C)
17. The synthetically produced radioactive noble gas by the collision of ${ }_{98}^{249} \mathrm{Cf}$ with ${ }_{20}^{48} \mathrm{Ca}$ is :
A) Radon
B) Radium
C) Oganesson
D) Xenon
Ans. (C)
18. The transition element $(\approx 5 \%)$ present with lanthanoid metal in Misch metal is:
A) Mg
B) Fe
C) Zn
D) Co

Ans. (B)
19. Match the following :
I. Zn^{2+}
i. d^{8} configuration
II. Cu^{2+}
ii. Colourless
III. Ni^{2+}
iii. $\mu=1.73 \mathrm{BM}$

Codes:

	I	II	III
A)	i	ii	iii
B)	ii	iii	i
C)	ii	i	iii
D)	i	iii	ii

20. Which of the following statements related to lanthanoids is incorrect?
A) Lanthanoids are silvery white soft metals
B) Samarium shows +2 oxidation state
C) Ce^{+4} solutions are sidely used as oxidizing agents in titrimetric analysis
D) Colour of Lanthanoid ion in solution is due to d-d transition.

Ans. (D)
21. On treating 100 mL of 0.1 M aqueous solution of the complex $\mathrm{CrCl}_{3} .6 \mathrm{H}_{2} \mathrm{O}$ with excess of AgNO_{3}, 2.86 g of AgCl was obtained. The complex is:
(A) $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \cdot \mathrm{C}_{3} 1.3 \mathrm{H}_{2} \mathrm{O}\right.$
(B) $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Cl} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
C) $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2} . \mathrm{H}_{2} \mathrm{O}$
(D) $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6} \mathrm{Cl}_{3}\right]$

Ans. (C)
Solution: Number of moles of complex $\mathrm{CrCl}_{3} .6 \mathrm{H}_{2} \mathrm{O}=\frac{100 \times 0.1}{1000}=10^{-2}$
Number of moles of complex $\mathrm{AgCl}=\frac{2.86}{143.5}=10^{-2}$ this indicates 2 moles of chlorine outside the coordination sphere.
22. The complex compounds $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{SO}_{4}\right] \mathrm{Br}$ and $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Br}\right] \mathrm{So}_{4}$ are
A) Geometrical isomers
B) Geometrical isomers
C) Optical isomers
D) Ionisation isomers

Ans. (D)
23. Which of the following statements are true about $\left[\mathrm{CoF}_{6}\right]^{3-}$ ion?
I. The complex has octahedral geometry.
II. Coordination number of Co is 3 and oxidation state is +6 .
III. The complex is $\mathrm{sp}^{3} \mathrm{~d}^{2}$ hybridised
IV. It is a high spin complex.
(A) I, II and IV
B) I, III and IV
(C) II and IV
(D) II, III and IV Ans. (B)
24. A haloalkane undergoes $\mathrm{S}_{\mathrm{N}} 2$ or $\mathrm{S}_{\mathrm{N}} 1$ reaction depending on:
A) Solvent used in the reaction
B) Low temperature
C) The type of halogen atom
D) Stability of the haloalkane

Ans. (A)
25. 2-Methyl propane can be prepared by Wurtz reaction. The haloalkanes taken along with mettallic sodium and dry ether are:
A) chloromethane and 2-chloropropane
B) chloroethane and chloromethane
C) chloroethane and 1-chloropropane
D) chloromethane and 1-chloropropane

Ans. (A)
26. In the following scheme of reaction,

X, Y and Z respectively are
A) AgF , alcoholic KOH and benzene
B) HF , aqueous KOH and Na in dry ether
C) $\mathrm{Hg}_{2} \mathrm{~F}_{2}$, alcoholic KOH and Na in dry ether
C) CoF_{2}, aqueous KOH and benzene
27. 8.8 g of monohydric alcohol added to ethyl magnesium iodide in ether liberates $2240 \mathrm{~cm}^{3}$ of ethane at STP. This monohydric alcohol when oxidised using pyridinium-chloropchromate, forms a carbonyl compound that answers silver mirror test (Tollens' test). The monohydric alcohol is:
A) butan-2-ol
B) 2, 2-dimethyl propan-1-ol
(C) pentan-2-ol
(D) 2, 2-dimethyl ethan-1-ol

Ans. (B)

Solution:

Mass	Volume at STP
8.8 g	$2240 \mathrm{~cm}^{3}$
x	$22400 \mathrm{~cm}^{3}$

Where $\mathrm{x}=88 \mathrm{~g}$
28. When a tertiary alcohol 'A' $\left(\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}\right)$ reacts with $20 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ at 358 K , it gives a compound ' B ' $\left(\mathrm{C}_{4} \mathrm{H}_{8}\right)$ as a major product. The IUPAC name of the compound ' B ' is:
(A) But-1-ene
(B) But-2-ene
(C) Cyclobutane
D) 2-Methylpropene Ans. (D)
29. PCC is :
A) $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+$ Pyridine.
B) $\mathrm{CrO}_{3}+\mathrm{CHCl}_{3}$
C) $\mathrm{CrO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4}$
D) A complex of chromium trioxide with pyridine +HCl

Ans. (D)
30. Propanone and Propanal are
A) Position isomers
B) Functional isomers
(C) Chain isomers
(D) Geometrical isomers

Ans. (B)
31. Sodium ethanoate on heating with soda lime gives X . Electrolysis of aqueous solution of sodium ethanoate gives ' Y '. ' X ' and ' Y ' respectively are
A) Methane and Ethane
(B) Methane and Methane
(C) Ethane and Methane
(D) Ethane and Ethane

Ans. (A)
32. But- 1-viie on reaction with dil. $\mathrm{H}_{2} \mathrm{SO}_{4}$ in presence of Hg^{2+} ions at 333 K gives:
A)

B)

C)

D)

Ans. (A)
33. Biologically active adrenaline and ephedrine used to increase blood pressure contain:
A) Primary amino group
B) Secondary amino group
C) Tertiary amino group
(D) Quaternary ammonium salt

Ans. (B)
34. In the reaction

Anilne $\xrightarrow[\text { dil. } \mathrm{HCl}]{\mathrm{NaNO}_{2}} P \xrightarrow[\mathrm{NaOH}]{\text { Phenol }} \mathrm{P}$
Q is :
(A) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{Cl}$
(B) ortho-hydroxyazobenzene
C) para-hydroxyazobenzene
(D) meta-hydroxyazobenzene
Ans. (C)
35. The female sex hormone which is responsible for the development of secondary female characteristics and participates in the control of menstrual cycle is
(A) Testosterone
B)Eradiol
(C) Insulin
(D) Thyroxine
Ans. (B)
36. The type of linkage present between nucleotides is
(A) Phosphoester linkage
B) Phosphodiester linkage
(C) Amide linkage
(D) Glycosidic linkage

Ans. (B)
37. $\alpha-\mathrm{D}-(+)$ - glucose and $\beta-\mathrm{D}-(+)$ - glucose are:
(A) Enantomers
(B) Conformers
(C) Epimers
D)Anomers
Ans. (D)
38. Which of the following set of polymers are used as fibre?
(i) Teflon
(ii) Starch
(iii) Terylene
(iv) Orlon
(A) (i) and (ii)
B) (ii) and (iii)
C) (iii) and (iv)
(D) (i) and (iv)
Ans. (C)
39. The biodegradable polymer obtained by polymerisation of Glycine and Aminocaproic acid is :
(A) Nylon 6
B) PHBV
C) Nylon 6
D) Nylon 6, 10
Ans. (C)
40. The compound

A) Sucralose
B) Aspartame
(C) Saccharin
(D) Alitame
Ans. (*)
41. Which one of the following is a cationic detergent?
A) Cetyltrimethylammonium bromide
B) Sodium dodecylbenzene suiphonate
C) Dodecylbenzene suiphonic acid
D) Dodecylbenzene

Ans. (A)
42. For which one of the following mixtures is composition uniform throughout?
A) Sand and water
B) Grains and pulses with stone
C) Mixture of oil and water
D) Dilute aqueous solution of sugar

Ans. (D)
43. The energy associated with first orbit of He^{+}is:
(A) 0 J
(B) $-8.72 \times 10^{-18} \mathrm{~J}$
(C) -4.58×10^{-18}
D) -0.545×10^{-18} J Ans. (B)

Solution: $E_{n}=-2.18 \times 10^{-18} \mathrm{~J} \times \frac{Z^{2}}{n^{2}}=-2.18 \times 10^{-18} \mathrm{~J} \times \frac{2^{2}}{1^{2}}$
44. A metalloid is:
A) Bi
B) Sb
(C) P
(D) Se
Ans. (B)\&(D)
45. A pair of isoelectronic species having bond order of one is:
(A) $\mathrm{N}_{2} \mathrm{CO}$
(B) $\mathrm{N}_{2}, \mathrm{NO}^{+}$
C) $\mathrm{O}_{2}^{2-}, \mathrm{F}_{2}$
(D) $\mathrm{CO}, \mathrm{NO}^{+}$
Ans. (C)
46. Identify the wrong relation for real gases:
A) $Z=\frac{V_{\text {ideal }}}{V_{\text {real }}}$
B) $p_{\text {ideal }}=p_{\text {real }}+\frac{\mathrm{an}^{2}}{\mathrm{~V}^{2}}$
(C) $\mathrm{V}_{\text {real }}=\mathrm{V}_{\text {ideal }}-\mathrm{nb}$
(D) $\left(\mathrm{p}+\frac{\mathrm{a}}{\mathrm{V}^{2}}\right)(\mathrm{V}-\mathrm{b})=\mathrm{RT}$
Ans. (A) \& (C)
47. From the diagram

$\Delta_{\mathrm{r}} \mathrm{H}$ for the reaction $\mathrm{C} \rightarrow \mathrm{A}$ is:
(A) +35 J
(B) -15 J
C) -35 J
(D) +15 J
Ans. (C)
48. Vapour pressure of a solution containing 18 g of glucose and 178.2 g of water at $100^{\circ} \mathrm{C}$ is .
(Vapour pressure of pure water at $100^{\circ} \mathrm{C}=760$ torr)
(A) 760 torr
B) 752.4 torr
(C) 7.6 torr
(D) 3207.6 torr
Ans. (B)

Solution: $\frac{\mathrm{p}^{0}-\mathrm{p}}{\mathrm{p}^{0}}=\frac{\mathrm{w}_{2} / \mathrm{M}_{2}}{\mathrm{w}_{1} / \mathrm{M}_{1}} \Rightarrow \frac{760-\mathrm{p}}{760}=\frac{0.1}{10}$
49. A mixture of phenol and aniline shows negative deviation from Raouilt's law. This is due to the formation of:
(A) Polar covalent bond
(B) Non-polar covalent bond
C) Intermolecular Hydrogen bond
(D) intramolecuthr Hydrogen bond

Ans. (C)
50. Which one of the following pairs will show positive deviation from Raoult'S Law?
(A) Water - HCl
B) Benzene - Methanol
(C) Water- HNO_{3}
(D) Acetone - Chloroform

Ans. (B)
51. How many Coulombs are required to oxidise 0.1 mole of $\mathrm{H}_{2} \mathrm{O}$ to oxygen?
A) $1.93 \times 10^{5} \mathrm{C}$
B) $1.93 \times 10^{4} \mathrm{C}$
C) $3.86 \times 10^{4} \mathrm{C}$
D) $965 \times 10^{3} \mathrm{C}$
Ans. (B)

Solution: 1 mole $-2 \times 96500 \mathrm{C}$

$$
\begin{gathered}
0.1-? \\
=19300 \mathrm{C}
\end{gathered}
$$

52. A current of 3 A is passed through a molten calcium salt for 1 hr 47 min 13 sec . The mass of calcium deposited is (Molar mass of $\mathrm{Ca}=40 \mathrm{~g} \mathrm{~mol}^{-1}$)
(A) 6.0 g
(B) 2.0 g
C) 8.0
D) 4.0 g
Ans. (D)

Solution: $\mathrm{W}=\mathrm{Z} \times \mathrm{I} \times \mathrm{t}$
53. The value of ' A ' in the equation $\lambda_{m}=\lambda_{\mathrm{m}}^{0}-\mathrm{A} \sqrt{\mathrm{C}}$ is same for the pair
A) NaCl and CaCl_{2} B) CaCl_{2} and MgSO_{4}
C) NaCl and KBr
D) MgCl_{2} and NaCl Ans. (C)
54. For the reaction, $\mathrm{A} \rightleftharpoons \mathrm{B}, \mathrm{E}_{\mathrm{a}}=50 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $\Delta \mathrm{H}=-20 \mathrm{~kJ} \mathrm{~mol}^{-1}$. When a catalyst is added, E_{a} decreases by $10 \mathrm{~kJ} \mathrm{~mol}^{-1}$. What is the $\mathrm{E}_{\mathbf{a}}$ for the backward reaction in the presence of catalyst?
A) $60 \mathrm{~kJ} \mathrm{~mol}^{-1}$
B) $40 \mathrm{~kJ} \mathrm{~mol}^{-1}$
C) $70 \mathrm{~kJ} \mathrm{~mol}^{-1}$
D) $20 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Ans. (A)
55. The first chlorinated organic insecticide prepared is :
(A) Gammexane
(B) Chloroform
C) COCl_{2}
D) DDT
Ans. (D)
56. Which of the following crystals has the unit cell such that $\mathrm{a}=\mathrm{b} \neq \mathrm{c}$ and $\alpha=\beta=90^{\circ}, \gamma=120^{\circ}$?
(A) Zinc blende
B) Graphite
(C) Cinnabar
(D) Potassium dichromate
Ans. (B)
57. MnO exhibits:
(A) Ferrimagnetism
B) Antiferromagnetism
C) Ferromagnetism
D) Paramagnetism

Ans. (B)
58. The number of atoms in 4.5 g of a face-centred cubic-crystal with edge length 300 pm is: (Given density $=10 \mathrm{~g} \mathrm{~cm}^{-3}$ and $\mathrm{N}_{\mathrm{A}}=6.022 \times 10^{23}$)
(A) $6.6 \times 10^{2} 0$
(B) 6.6×10^{23}
(C) 6.6×10^{19}
D) 6.6×10^{22}
Ans. (D)

Solution: $d=\frac{Z \times M}{a^{3} \times N_{A}}$ where $z=4$
59. 0.48 g of an organic compound on complete combustion produced 0.22 g of CO_{2}. The percentage of C in the given organic compound is
(A) 25
(B) 50
C) 12.5
(D) 87.5
Ans. (C)
60. In the given sequence of reactions, identify P^{\prime}, ' Q ', ' R ' and 'S' respectively.

A) Br_{2}, Ale. $\mathrm{KOH}, \mathrm{NaOH}, \mathrm{Al}_{2} \mathrm{O}$.
B) HBr , Alc. $\mathrm{KOH}, \mathrm{CaC}_{2}, \mathrm{KMnO}_{4}$
C) HBr , Alc. $\mathrm{KOH}, \mathrm{NaNH}_{2}$, Red hot iron tube
D) Br_{2}, Alc. KOR, NaNH_{2}, Red hot iron tube

Ans. (D)

[^0]: * : GRACE

