KEY ANSWERS

1	\mathbf{C}	16	\mathbf{C}	31	\mathbf{C}	46	\mathbf{C}
2	\mathbf{B}	17	\mathbf{D}	32	\mathbf{B}	47	\mathbf{B}
3	\mathbf{D}	18	\mathbf{A}	33	\mathbf{A}	48	\mathbf{C}
4	\mathbf{A}	19	\mathbf{C}	34	\mathbf{A}	49	\mathbf{B}
5	\mathbf{D}	20	\mathbf{A}	35	\mathbf{B}	50	$*$
6	\mathbf{B}	21	\mathbf{C}	36	\mathbf{D}	51	\mathbf{C}
7	\mathbf{C}	22	\mathbf{A}	37	\mathbf{C}	52	\mathbf{A}
8	\mathbf{A}	23	\mathbf{D}	38	\mathbf{A}	53	\mathbf{B}
9	\mathbf{C}	24	\mathbf{C}	39	\mathbf{C}	54	\mathbf{C}
10	\mathbf{B}	25	\mathbf{B}	40	\mathbf{C}	55	\mathbf{B}
11	\mathbf{D}	26	\mathbf{B}	41	\mathbf{D}	56	\mathbf{B}
12	\mathbf{D}	27	\mathbf{C}	42	\mathbf{B}	57	\mathbf{A}
13	\mathbf{A}	28	\mathbf{B}	43	\mathbf{C}	58	\mathbf{B}
14	\mathbf{C}	29	\mathbf{B}	44	\mathbf{C}	59	\mathbf{D}
15	\mathbf{B}	30	\mathbf{C}	45	\mathbf{C}	60	\mathbf{B}

* : None of the given options

1. The function $x^{x} ; x>0$, is strictly increasing at
(A) $\forall \mathrm{x} \in \mathrm{R}$
(B) $\mathrm{x}<\frac{1}{\mathrm{e}}$
C) $x>\frac{1}{e}$
(D) $x<0$

Ans: (C)

Solution:

$$
\begin{aligned}
& \frac{d}{d x}\left(x^{x}\right)=x^{x}(1+\log x) \\
& \quad \uparrow \Rightarrow x^{x}(1+\log x)>0 \Rightarrow \log x>-1 \therefore x>\frac{1}{e}
\end{aligned}
$$

2. The maximum volume of the right circular cone with slant height 6 units is
(A) $4 \sqrt{3} \pi$ cubic units
(B) $16 \sqrt{3} \pi$ cubic units
(C) $3 \sqrt{3} \pi$ cubic units
(D) $6 \sqrt{3} \pi$ it cubic units

Ans: (B)
Solution: $V=\frac{1}{3} \pi r^{2} h ; l^{2}=r^{2}+h^{2}$
$\therefore \mathrm{V}=\frac{1}{3} \pi \mathrm{~h}\left(\mathrm{l}^{2}-\mathrm{h}^{2}\right)=\frac{1}{3} \pi\left(1^{2} \mathrm{~h}-\mathrm{h}^{3}\right)$
$\frac{\mathrm{dV}}{\mathrm{dh}}=0 \Rightarrow 1^{2}-3 \mathrm{~h}^{2}=0 \Rightarrow \mathrm{~h}=\frac{1}{\sqrt{3}}=\frac{6}{\sqrt{3}}=2 \sqrt{3}$
$\operatorname{Max} \mathrm{V}=\frac{1}{3} \pi\left(6^{2} \cdot 2 \sqrt{3}-24 \sqrt{3}\right)=\frac{1}{3} \pi(48 \sqrt{3})=16 \pi \sqrt{3}$
3. If $f(x)=x e^{x(1-x)}$ then $f(x)$ is
(A) increasing in R
(B) decreasing in R
(C) decreasing in $\left[-\frac{1}{2}, 1\right]$
(D) increasing in $\left[-\frac{1}{2}, 1\right]$

Ans: (D)
Solution: $\mathrm{f}^{\prime}(\mathrm{x})=\mathrm{e}^{\mathrm{x}(1-\mathrm{x})}+\mathrm{x} \cdot \mathrm{e}^{\mathrm{x}(1-\mathrm{x})} \cdot(1-2 \mathrm{x})$

$$
\begin{gathered}
=\mathrm{e}^{\mathrm{x}(1-\mathrm{x})}\left(1+\mathrm{x}-2 \mathrm{x}^{2}\right) \\
\mathrm{f}(\mathrm{x}) \text { is } \uparrow \Rightarrow 1+\mathrm{x}-2 \mathrm{x}^{2}>0 \therefore \mathrm{x} \in\left[-\frac{1}{2}, 1\right]
\end{gathered}
$$

4. $\int \frac{\sin x}{3+4 \cos ^{2} x} d x=$
(A) $-\frac{1}{2 \sqrt{3}} \tan ^{-1}\left(\frac{2 \cos x}{\sqrt{3}}\right)+C$
B) $\frac{1}{\sqrt{3}} \tan ^{-1}\left(\frac{\cos x}{3}\right)+C$
C) $\frac{1}{2 \sqrt{3}} \tan ^{-1}\left(\frac{\cos \mathrm{x}}{3}\right)+\mathrm{C}$
D) $-\frac{1}{\sqrt{3}} \tan ^{-1}\left(\frac{2 \cos \mathrm{x}}{3}\right)+\mathrm{C}$

Ans: (A)
Solution: $I=-\frac{1}{2} \int \frac{d(2 \cos x)}{3+4 \cos ^{2} x}=-\frac{1}{2} \cdot \frac{1}{\sqrt{3}} \tan ^{-1}\left(\frac{2 \cos x}{\sqrt{3}}\right)+C$
5. $\int_{-\pi}^{\pi}\left(1-x^{2}\right) \sin x \cdot \cos ^{2} x d x=$
(A) $\pi-\frac{\pi^{2}}{3}$
(B) $2 \pi-\pi^{3}$
(C) $\pi-\frac{\pi^{3}}{2}$
(D) 0

Ans: (D)
Solution: $\left(1-x^{2}\right) \sin x \cdot \cos ^{2} x$ is an odd function of x
$\therefore \int_{-\pi}^{\pi}\left(1-x^{2}\right) \sin x \cdot \cos ^{2} x d x=0$
6. $\int \frac{1}{\mathrm{x}\left[6(\log \mathrm{x})^{2}+7 \log \mathrm{x}+2\right]} \mathrm{dx}=$
A) $\frac{1}{2} \log \left|\frac{2 \log x+1}{3 \log x+2}\right|+C$
B) $\log \left|\frac{2 \log x+1}{3 \log x+2}\right|+C$
C) $\log \left|\frac{3 \log x+2}{2 \log x+1}\right|+C$
D) $\frac{1}{2} \log \left|\frac{3 \log x+1}{3 \log x+2}\right|+C$

Ans: (B)
Solution: Put $t=\log x$
Then $I=\int \frac{d t}{6 t^{2}+7 t+2} ; 6 t^{2}+7 t+2=6 t^{2}+4 t+3 t+2=(3 t+2)(2 t+1)$

$$
\begin{aligned}
& =\int \frac{d t}{(3 t+2)(2 t+1)} \\
& =\int\left(\frac{\mathrm{A}}{(3 \mathrm{t}+2)}+\frac{\mathrm{B}}{(2 \mathrm{t}+1)}\right) \mathrm{dt} ; \mathrm{A}=\frac{1}{2\left(-\frac{2}{3}\right)+1}=-3 \\
& =\int\left(\frac{-3}{(3 t+2)}+\frac{2}{(2 t+1)}\right) d t ; B=\frac{1}{3\left(-\frac{1}{2}\right)+2}=2 \\
& =-\log (3 t+2)+\log (2 t+1) \\
& =\log \frac{2 t+1}{3 t+2}+C
\end{aligned}
$$

7. $\int \frac{\sin \frac{5 x}{2}}{\sin \frac{x}{2}} d x=$
A) $2 x+\sin x+2 \sin 2 x+C$
B) $x+2 \sin x+2 \sin 2 x+C$
C) $x+2 \sin x+\sin 2 x+C$
D) $2 x+\sin x+\sin 2 x+C$

Ans: (C)
Solution: $\frac{\sin \frac{5 x}{2}}{\sin \frac{x}{2}}=\frac{\sin \frac{5 x}{2} \cos \frac{x}{2}}{\sin \frac{x}{2} \cos \frac{x}{2}}=\frac{\sin 3 x+\sin 2 x}{\sin x}$

$$
=\frac{3 \sin x-4 \sin ^{3} x+2 \sin x \cos x}{\sin x}=3-4 \cdot \frac{1}{2}(1-\cos 2 x)+2 \cos x=1+2 \cos 2 x+2 \cos x
$$

$\therefore \mathrm{I}=\mathrm{x}+\sin 2 \mathrm{x}+2 \sin \mathrm{x}+\mathrm{C}$
Boscoss, III \& IV Floor, ESSEL Centre, Near PVS Circle, Mangalore-3, Ph: 0824-4272728, 9972458537/CET-2024
8. $\int_{1}^{5}(|x-3|+|1-x|) d x=$
A) 12
B) $\frac{5}{6}$
C) 21
D) 10

Ans: (A)
Solution: $I=\int_{1}^{5}|x-3| d(x-3)+\int_{1}^{5}|x-1| d(x-1)$

$$
=\left.\frac{1}{2}(\mathrm{x}-3)|\mathrm{x}-3|\right|_{1} ^{5}+\left.\frac{1}{2}(\mathrm{x}-1)|\mathrm{x}-1|\right|_{1} ^{5}=\frac{1}{2}(4+4)+\frac{1}{2}(16+0)=4+8=12
$$

9. $\lim _{n \rightarrow \infty}\left(\frac{n}{n^{2}+1^{2}}+\frac{n}{n^{2}+2^{2}}+\frac{n}{n^{2}+3^{2}}+\ldots . .+\frac{1}{(5 n)}\right)=$
A) $\frac{\pi}{4}$
B) $\tan ^{-1} 3$
3) $\tan ^{-1} 2$
D) $\frac{\pi}{2}$

Ans: (C)
Solution: $\mathrm{L}=\lim _{\mathrm{n} \rightarrow \infty} \sum_{\mathrm{r}=1}^{2 \mathrm{n}} \frac{\mathrm{n}}{\mathrm{n}^{2}+\mathrm{r}^{2}} ; \frac{1}{5 \mathrm{n}}=\frac{\mathrm{n}}{\mathrm{n}^{2}+(2 \mathrm{n})^{2}}$

$$
=\operatorname{Lt}_{\mathrm{n} \rightarrow \infty} \sum_{\mathrm{r}=1}^{2 \mathrm{n}} \frac{1}{\mathrm{n}} \cdot \frac{1}{1+\left(\frac{\mathrm{r}}{\mathrm{n}}\right)^{2}}=\int_{0}^{2} \frac{1}{1+\mathrm{x}^{2}} \mathrm{dx}=\left.\tan ^{-1} \mathrm{x}\right|_{0} ^{2}=\tan ^{-1} 2
$$

Remark: This question is from the DELETED syllabus (integration as summation)
10. The area of the region bounded by the line $y=3 x$ and the curve $y=x^{2}$ in sq. units is
A) 10
B) $\frac{9}{2}$
C) 9
D) 5

Solution: $A=\int_{0}^{3}\left(3 x-x^{2}\right) d x$

$$
=\left.\left(3 \frac{x^{2}}{2}-\frac{x^{3}}{3}\right)\right|_{0} ^{3}=\frac{27}{2}-\frac{27}{3}=27 \cdot \frac{1}{6}=\frac{9}{2}
$$

Remark: This is also from the DELETED syllabus (area between curves)

11. The area of the region bounded by the line $y=x$ and the curve $y=x^{3}$ is
A) 0.2 sq. units
B) 0.3 sq. units
C) 0.4 sq. units
D) 0.5 sq. units

Solution: $A=2 \int_{0}^{1}\left(x-x^{3}\right) d x$

$\mathrm{A}=\left.2\left[\frac{\mathrm{x}^{2}}{2}-\frac{\mathrm{x}^{4}}{4}\right]\right|_{0} ^{1}=2\left[\frac{1}{2}-\frac{1}{4}\right]=\frac{1}{2}=0.5$
Ans: (D)

Remark: This is also from the DELETED syllabus (area between curves)
12. The solution of $e^{\frac{d y}{d x}}=x+1, y(0)=3$ is
(A) $y-2=x \log x-x$
(B) $y-x-3=x \log x$
(C) $y-x-3=(x+1) \log (x+1)$
(D) $y+x-3=(x+1) \log (x+1)$

Ans: (D)
Solution: $\quad e^{\frac{d y}{d x}}=x+1 \Rightarrow \frac{d y}{d x}=\log (x+1)$

$$
\begin{aligned}
\therefore \mathrm{y}= & \int \log (\mathrm{x}+1) \mathrm{d}(\mathrm{x}+1)=\log (\mathrm{x}+1) \cdot(\mathrm{x}+1)-\int \frac{1}{\mathrm{x}+1} \cdot(\mathrm{x}+1) \mathrm{dx} \\
& =(\mathrm{x}+1) \log (\mathrm{x}+1)-\mathrm{x}+\mathrm{c} \\
\mathrm{y}(0) & =3 \Rightarrow 3=0-0+\mathrm{c} \Rightarrow \mathrm{c}=3 \\
\therefore \mathrm{y} & =(\mathrm{x}+1) \log (\mathrm{x}+1)-\mathrm{x}+3 \text { i.e. } \mathrm{y}+\mathrm{x}-3=(\mathrm{x}+1) \log (\mathrm{x}+1)
\end{aligned}
$$

13. The family of curves whose x and y intercepts of a tangent at any point are respectively double the x and y coordinates of that point is
(A) $x y=C$
(B) $x^{2}+y^{2}=C$
(C) $x^{2}-y^{2}=C$
(D) $\frac{y}{x}=C$

Ans: (A)
Solution: Equation of tangent at $\left(x_{1}, y_{1}\right) ; y-y_{1}=m\left(x-x_{1}\right) ; m=\left(\frac{d y}{d x}\right)_{\left(x_{1}, y_{1}\right)}$
By data $\left(2 \mathrm{x}_{1}, 0\right)$ and $\left(0,2 \mathrm{y}_{1}\right)$ lie on it
$\Rightarrow-\mathrm{y}_{1}=\mathrm{mx}_{1} \Rightarrow \mathrm{~m}=\frac{-\mathrm{y}_{1}}{\mathrm{x}_{1}}\left[\right.$ also, $\left.\mathrm{y}_{1}=\mathrm{m}\left(-\mathrm{x}_{1}\right)\right]$
Thus, $\frac{d y}{d x}$ at (x, y) is $\frac{-y}{x}$ i.e. $\frac{d y}{d x}=\frac{-y}{x}$
$\Rightarrow \mathrm{xdy}+\mathrm{ydx}=0$ i.e. $\mathrm{d}(\mathrm{xy})=0 \therefore \mathrm{xy}=\mathrm{C}$
Remark: From DELETED syllabus (tangent and normal)
14. The vectors $\overrightarrow{\mathrm{AB}}=3 \hat{\mathrm{i}}+4 \hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{AC}}=5 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+4 \hat{\mathrm{k}}$ are the sides of a $\Delta \mathrm{ABC}$. The length of the median through A is
(A) $\sqrt{18}$
(B) $\sqrt{72}$
(C) $\sqrt{33}$
(D) $\sqrt{288}$
Ans: (C)

Solution: $\quad \overrightarrow{\mathrm{AD}}=\frac{1}{2}(\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{AC}})=\frac{1}{2}(8 \mathrm{i}-2 \mathrm{j}+8 \mathrm{k})=4 \mathrm{i}-\mathrm{j}+4 \mathrm{k}$
$\therefore \mathrm{AD}=|\overrightarrow{\mathrm{AD}}|=\sqrt{16+1+16}=\sqrt{33}$
15. The volume of the parallelopiped whose co-terminous edges are $\hat{j}+\hat{k}, \hat{i}+\hat{k}$ and $\hat{i}+\hat{j}$ is
(A) 6 cu . units
(B) 2 cu. Units
(C) 4 cu. units
(D) 3 cu . Units

Ans: (B)
Solution: Required $=\left[\begin{array}{ll}i+j \quad j+k \quad k+i\end{array}\right]$

$$
=2[\mathrm{i} \mathrm{j} k]=2 \mathrm{cu} \text { units }
$$

Remark: From DELETED syllabus (Scalar triple product of vectors)
16. Let \vec{a} and \vec{b} be two unit vectors and θ is the angle between them. Then $\vec{a}+\vec{b}$ is a unit vector if
(A) $\theta=\frac{\pi}{4}$
(B) $\theta=\frac{\pi}{3}$
(C) $\theta=\frac{2 \pi}{3}$
(D) $\theta=\frac{\pi}{2}$
Ans: (C)

Solution: $|\overrightarrow{\mathrm{a}}+\mathrm{b}|=2 \cos \frac{\theta}{2} \Rightarrow \cos \frac{\theta}{2}=\frac{1}{2} \therefore \theta=\frac{2 \pi}{3}$
17. If $\vec{a}, \vec{b}, \vec{c}$ are three non-coplanar vectors and p, q, r are vectors defined by $\vec{p}=\frac{\vec{b} \times \vec{c}}{\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]}, \vec{q}=\frac{\vec{c} \times \vec{a}}{\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]}, \vec{r}=\frac{\vec{a} \times \vec{b}}{\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]}$, then $(\vec{a}+\vec{b}) \cdot \vec{p}+(\vec{b}+\vec{c}) \cdot \vec{q}+(\vec{c}+\vec{a}) \cdot \vec{r}$ is
(A) 0
(B) 1
(C) 2
(D) 3 Ans: (D)

Solution: $\vec{a} \cdot \vec{p}=\vec{q} \cdot \vec{b}=\vec{r} \cdot \vec{c}=1$
$\overrightarrow{\mathrm{b}} \cdot \overrightarrow{\mathrm{p}}=\overrightarrow{\mathrm{c}} \cdot \overrightarrow{\mathrm{q}}=\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{r}}=0$
\therefore G. E. $=3$
Remark: From DELETED syllabus (Scalar triple product of vectors)
18. If lines $\frac{x-1}{-3}=\frac{y-2}{2 k}=\frac{z-3}{2}$ and $\frac{x-1}{3 k}=\frac{y-5}{1}=\frac{z-6}{-5}$ are mutually perpendicular, then k is equal to
(A) $-\frac{10}{7}$
(B) $-\frac{7}{10}$
(C) -10
(D) -7

Ans: (A)
Solution: $(-3)(3 \mathrm{k})+(2 \mathrm{k})(1)+2(-5)=0$
$\therefore 7 \mathrm{k}=-10 \therefore \mathrm{k}=\frac{-10}{7}$
19. The distance between the two planes $2 x+3 y+4 z=4$ and $4 x+6 y+8 z=12$ is
(A) 2 units
(B) 8 units
(C) $\frac{2}{\sqrt{29}}$ units
(D) 4 units
Ans: (C)

Solution: Required $=\frac{6-4}{\sqrt{4+9+16}}=\frac{2}{\sqrt{29}}$
Remark: From DELETED syllabus (The plane)
20. The sine of the angle between the straight line $\frac{x-2}{3}=\frac{y-3}{4}=\frac{4-z}{-5}$ and the plane $2 x-2 y+z=5$ is
(A) $\frac{1}{5 \sqrt{2}}$
(B) $\frac{2}{5 \sqrt{2}}$
(C) $\frac{3}{50}$
(D) $\frac{3}{\sqrt{50}}$
Ans: (A)

Solution: $\sin \theta=\frac{|\mathrm{ab}+\mathrm{bm}+\mathrm{cn}|}{\sqrt{\sum \mathrm{a}^{2}} \sqrt{\sum \mathrm{l}^{2}}}=\frac{|6-8+5|}{\sqrt{9+16+25} \sqrt{4+4+1}}=\frac{3}{\sqrt{50} \cdot 3}=\frac{1}{\sqrt{50}}=\frac{1}{5 \sqrt{2}}$
Remark: From DELETED syllabus (The plane)
21. The equation $x y=0$ in three-dimensional space represents
(A) a pair of straight lines
(B) a plane
(C) a pair of planes at right angles
(D) a pair of parallel planes
Ans: (C)

Solution: $\mathrm{xy}=0 \Rightarrow \mathrm{x}=0$ and $\mathrm{y}=0$ i.e. $\mathrm{y}-\mathrm{z}$ plane and $\mathrm{z}-\mathrm{x}$ plane $; \perp$ planes .
22. The plane containing the point $(3,2,0)$ and the line $\frac{x-3}{1}=\frac{y-6}{5}=\frac{z-4}{4}$ is
(A) $x-y+z=1$
(B) $x+y+z=5$
(C) $x+2 y-z=1$
(D) $2 x-y+z=5$

Ans: (A)
Solution: $\left|\begin{array}{ccc}x-3 & y-6 & z-4 \\ 0 & -4 & -4 \\ 1 & 5 & 4\end{array}\right|=0 \Rightarrow x-y+z=1$
Aliter: The point $(3,2,0)$ satisfies (A) and (D)
But $a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0$, only for (A) ; (1) (1) $+5(-1)+(1)(4)=0$
Remark: From DELETED syllabus (The plane)
23. Corner points of the feasible region for an LPP are $(0,2),(3,0),(6,0),(6,8)$ and $(0,5)$.

Let $z=4 x+6 y$ be the objective function. The minimum value of z occurs at
(A) Only (0, 2)
(B) Only $(3,0)$
(C) The mid-point of the line segment joining the points $(0,2)$ and $(3,0)$
(D) Any point on the line segment joining the points $(0,2)$ and $(3,0)$

Ans: (D)
Solution: $Z(0,2)=12 ; Z(3,0)=12$; other Z values are obviously more than 12
$Z_{\min }$ occurs at $(0,2)$ and $(3,0)$ and hence at every point on the line segment joining them.
24. A die is thrown 10 times. The probability that an odd number will come up at least once is
(A) $\frac{11}{1024}$
(B) $\frac{1013}{1024}$
(C) $\frac{1023}{1024}$
(D) $\frac{1}{1024}$
Ans: (C)

Solution: $\mathrm{P}($ atleast one $)=1-\mathrm{P}($ none $)$

$$
=1-\left(\frac{1}{2}\right)^{10}=\frac{1023}{1024}
$$

Remark: From DELETED syllabus (Binomial Distribution)
25. A random variable X has the following probability distribution

X	0	1	2
$\mathrm{P}(\mathrm{X})$	$\frac{25}{36}$	k	$\frac{1}{36}$

If the mean of the random variable X is $\frac{1}{3}$, then the variance is
(A) $\frac{1}{18}$
(B) $\frac{5}{18}$
(C) $\frac{7}{18}$
(D) $\frac{11}{18}$
Ans: (B)

Solution: $\sum \mathrm{p}(\mathrm{x})=1 \Rightarrow \frac{25}{36}+\mathrm{k}+\frac{1}{36}=1 \Rightarrow \mathrm{k}=\frac{10}{36}=\frac{5}{18}$

$$
\sigma^{2}=\sum \mathrm{px}^{2}-(\overline{\mathrm{x}})^{2}=\left(0+\frac{5}{18} \cdot 1^{2}+\frac{1}{36} \cdot 4\right)-\left(\frac{1}{3}\right)^{2}=\frac{5}{18}
$$

Remark: From DELETED syllabus (Probability Distribution)

26. If a random variable X follows the binomial distribution with parameters $n=5, p$ and $P(X=2)=$ $9 P(X=3)$, then p is equal to
(A) 10
(B) $\frac{1}{10}$
(C) 5
(D) $\frac{1}{5}$
Ans: (B)

Solution: $P(x)={ }^{n} C_{x} p^{x} q^{n-x} ; p+q=1$

$$
\mathrm{p}(\mathrm{x}=2)=9 \mathrm{p}(\mathrm{x}=3) \Rightarrow{ }^{5} \mathrm{C}_{2} \mathrm{p}^{2} \mathrm{q}^{3}=9 .{ }^{5} \mathrm{C}_{3} \mathrm{p}^{3} \mathrm{q}^{2} \Rightarrow \mathrm{q}=9 \mathrm{p} \text { i.e. } 1-\mathrm{p}=9 \mathrm{p} \Rightarrow \mathrm{p}=\frac{1}{10}
$$

Remark: From DELETED syllabus (Binomial Distribution)
27. Two finite sets have in and n elements respectively. The total number of subsets of the first set is 56 more than the total number of subsets of the second set. The values of m and n respectively are
(A) 7,6
(B) 5,1
(C) 6,3
(D) 8,7
Ans: (C)

Solution: $2^{m}-2^{n}=56=8 \times 7=2^{6}-2^{3} \Rightarrow m=6, n=3$
28. If $[x]^{2}-5[x]+6=0$, where $[x]$ denotes the greatest integer function, then
(A) $x \in[3,4]$
(B) $x \in[2,4)$
(C) $x \in[2,3]$
(D) $\mathrm{x} \in(2,3] \quad$ Ans: (B)

Solution: $[\mathrm{x}]=2$ or $3 \quad \therefore \mathrm{x} \in[2,4)$
29. If in two circles, arcs of the same length subtend angles 30° and 78° at the centre, then the ratio of their radii is
(A) $\frac{5}{13}$
(B) $\frac{13}{5}$
(C) $\frac{13}{4}$
(D) $\frac{4}{13}$
Ans: (B)

Solution: $\frac{\mathrm{r}_{1}}{\mathrm{r}_{2}}=\frac{\theta_{2}}{\theta_{1}}=\frac{78}{30}=\frac{13}{5}$ (because it is a ratio)
30. If $\triangle A B C$ is right angled at C, then the value of $\tan A+\tan B$ is
(A) $a+b$
(B) $\frac{a^{2}}{b c}$
(C) $\frac{c^{2}}{a b}$
(D) $\frac{c^{2}}{a c}$
Solution: $\tan \mathrm{A}+\tan \mathrm{B}=\frac{\mathrm{a}}{\mathrm{b}}+\frac{\mathrm{b}}{\mathrm{a}}=\frac{\mathrm{a}^{2}+\mathrm{b}^{2}}{\mathrm{ab}}=\frac{\mathrm{c}^{2}}{\mathrm{ab}}$

31. The real value of ' α ' for which $\frac{1-\mathrm{i} \sin \alpha}{1+2 \mathrm{i} \sin \alpha}$ is purely real is
(A) $(\mathrm{n}+1) \frac{\pi}{2}, \mathrm{n} \in \mathrm{N}$
(B) $(2 \mathrm{n}+1) \frac{\pi}{2}, \mathrm{n} \in \mathrm{N}$
(C) $\mathrm{n} \pi, \mathrm{n} \in \mathrm{N}$
(D) $(2 \mathrm{n}-1) \frac{\pi}{2}, \mathrm{n} \in \mathrm{N} \quad$ Ans. (C)

Solution: $\mathrm{Z}=\frac{(1-\mathrm{i} \sin \alpha)(1-2 \mathrm{i} \sin \alpha)}{1+4 \sin ^{2} \alpha}=\frac{(\quad)-3 \mathrm{i} \sin \alpha}{()}$
Z is purely real $\Rightarrow \frac{-3 \sin \alpha}{1+4 \sin ^{2} \alpha}=0 \Rightarrow \sin \alpha=0 \quad \therefore \alpha=\mathrm{n} \pi$
Aliter: When $\alpha=0, \mathrm{Z}$ is real
And $\alpha=0$ is included only in (C)
32. The length of a rectangle is five times the breadth. If the minimum perimeter of the rectangle is 180 cm, then
(A) Breadth $\leq 15 \mathrm{~cm}$
(B) Breadth $\geq 15 \mathrm{~cm}$
(C) Length $\leq 15 \mathrm{~cm}$
(D) Length $=15 \mathrm{~cm}$

Ans. (B)
Solution : $l=5 \mathrm{~b}$
$P=2(5 b+b)=12 b \geq 180 \Rightarrow b \geq 15$
33. The value of ${ }^{49} \mathrm{C}_{3}+{ }^{48} \mathrm{C}_{3}+{ }^{47} \mathrm{C}_{3}+{ }^{46} \mathrm{C}_{3}+{ }^{45} \mathrm{C}_{3}+{ }^{45} \mathrm{C}_{4}$ is
(A) ${ }^{50} \mathrm{C}_{4}$
(B) ${ }^{50} \mathrm{C}_{3}$
(C) ${ }^{50} \mathrm{C}_{2}$
(D) ${ }^{50} \mathrm{C}_{1}$
Ans. (A)

Solution: Use ${ }^{n} C_{r}+{ }^{n} C_{r-1}={ }^{n+1} C_{r}$
${ }^{45} \mathrm{C}_{3}+{ }^{45} \mathrm{C}_{4}={ }^{46} \mathrm{C}_{4} ;{ }^{46} \mathrm{C}_{4}+{ }^{46} \mathrm{C}_{3}={ }^{47} \mathrm{C}_{4} ;{ }^{47} \mathrm{C}_{3}+{ }^{47} \mathrm{C}_{4}={ }^{48} \mathrm{C}_{4}$ etc
34. In the expansion of $(1+x)^{n}$ $\frac{\mathrm{C}_{1}}{\mathrm{C}_{0}}+2 \frac{\mathrm{C}_{2}}{\mathrm{C}_{1}}+3 \frac{\mathrm{C}_{3}}{\mathrm{C}_{2}}+\ldots \ldots .+\mathrm{n} \frac{\mathrm{C}_{\mathrm{n}}}{\mathrm{C}_{\mathrm{n}-1}}$ is equal to
(A) $\frac{\mathrm{n}(\mathrm{n}+1)}{2}$
(B) $\frac{\mathrm{n}}{2}$
(C) $\frac{\mathrm{n}+1}{2}$
(D) $3 n(n+1)$
Ans: (A)

Solution: $\frac{C_{r}}{C_{r-1}}=\frac{{ }^{n} C_{r}}{{ }^{n} C_{r-1}}=\frac{n-r+1}{r}$
\therefore G.E. $=\sum_{\mathrm{r}=1}^{\mathrm{n}} \mathrm{r} \cdot \frac{(\mathrm{n}-\mathrm{r}+1)}{\mathrm{r}}=\sum_{\mathrm{r}=1}^{\mathrm{n}}(\mathrm{n}-\mathrm{r}+1)=\mathrm{n}+(\mathrm{n}-1)+\ldots . .+1=\frac{\mathrm{n}(\mathrm{n}+1)}{2}$
Aliter: Put $\mathrm{n}=1$: Then G.E. $=\frac{{ }^{\mathrm{I}} \mathrm{C}_{1}}{{ }^{1} \mathrm{C}_{0}}=1$
Option (A) : $=\frac{{ }^{1} \mathrm{C}_{1+1}}{2}=1$ (C) $\frac{1+1}{2}=1$ satisfy
Put $\mathrm{n}=2$: Then G.E. $=\frac{{ }^{2} \mathrm{C}_{1}}{{ }^{2} \mathrm{C}_{0}}+2 \cdot \frac{{ }^{2} \mathrm{C}_{2}}{{ }^{2} \mathrm{C}_{1}}=\frac{2}{1}+2 \cdot \frac{1}{2}=3$; Only A satisfies

Remark: From DELETED Syllabus (Binomial Coefficients)

35. If S_{n} stands for sum to n -terms of a G.P. with ' a ' as the first term and ' r ' as the common ratio then S_{n} : $\mathrm{S}_{2 \mathrm{n}}$ is
(A) $\mathrm{r}^{\mathrm{n}}+1$
(B) $\frac{1}{\mathrm{r}^{\mathrm{n}}+1}$
(C) $\mathrm{r}^{\mathrm{n}}-1$
(D) $\frac{1}{\mathrm{r}^{\mathrm{n}}-1}$ Ans. (B)

Solution: $\frac{S_{n}}{S_{2 n}}=\frac{\frac{a\left(r^{n}-1\right)}{r-1}}{\frac{a\left(r^{2 n}-1\right)}{r-1}}=\frac{r^{n}-1}{\left(r^{n}+1\right)\left(r^{n}-1\right)}=\frac{1}{r^{n}+1}$
Aliter: Put $\mathrm{n}=1$
Then $\frac{\mathrm{S}_{\mathrm{n}}}{\mathrm{S}_{2 \mathrm{n}}}=\frac{\mathrm{S}_{1}}{\mathrm{~S}_{2}}=\frac{\mathrm{a}}{\mathrm{a}+\mathrm{ar}}=\frac{1}{1+\mathrm{r}} ;$ (B) alone gives $\frac{1}{\mathrm{r}+1}$ when $\mathrm{n}=1$
36. If A.M. and G.M. of roots of a quadratic equation are 5 and 4 respectively, then the quadratic equation is
(A) $x^{2}-10 x-16=0$
(B) $x^{2}+10 x+16=0$
(C) $\mathrm{x}^{2}+10 \mathrm{x}-16=0$
(D) $\mathrm{x}^{2}-10 \mathrm{x}+16=0$
Ans: (D)

Solution: $\mathrm{x}^{2}-2 \mathrm{Ax}+\mathrm{G}^{2}=0$ i.e. $\mathrm{x}^{2}-10 \mathrm{x}+16=0$
37. The angle between the line $x+y=3$ and the line joining the points $(1,1)$ and $(-3,4)$ is
(A) $\tan ^{-1}$ (7)
(B) $\tan ^{-1}\left(-\frac{1}{7}\right)$
(C) $\tan ^{-1}\left(\frac{1}{7}\right)$
(D) $\tan ^{-1}\left(\frac{2}{7}\right)$ Ans. (C)

Solution: $m_{1}=-1 ; m_{2}=\frac{4-1}{-3-1}=-\frac{3}{4}$
$\tan \theta=\left|\frac{\mathrm{m}_{1}-\mathrm{m}_{2}}{1+\mathrm{m}_{1} \mathrm{~m}_{2}}\right|=\left|\frac{-1+\frac{3}{4}}{1+\frac{3}{4}}\right|=\left|-\frac{1}{7}\right|=\frac{1}{7} \therefore \theta=\tan ^{-1} \frac{1}{7}$
Note: If we apply $\tan \theta=\frac{\mathrm{m}_{1}-\mathrm{m}_{2}}{1+\mathrm{m}_{1} \mathrm{~m}_{2}}$ gives $\tan \theta=-\frac{1}{7}$
$\therefore \theta=\pi-\tan ^{-1} \frac{1}{7}$ is the obtuse angle between the lines
$\therefore \theta=\tan ^{-1}\left(-\frac{1}{7}\right) \in\left(-\frac{\pi}{2}, 0\right)$ can't be the correct option
38. The equation of parabola whose focus is $(6,0)$ and directrix is $x=-6$ is
(A) $y^{2}=24 x$
(B) $y^{2}=-24 x$
(C) $x^{2}=24 y$
(D) $x^{2}=-24 y$

Ans. (A)
Solution: Standard form I : $y^{2}=4 a x ; a=6 \quad \therefore y^{2}=24 x$
39. $\lim _{x \rightarrow \frac{\pi}{4}} \frac{\sqrt{2} \cos x-1}{\cot x-1}$ is equal to
(A) 2
(B) $\sqrt{2}$
(C) $\frac{1}{2}$
(D) $\frac{1}{\sqrt{2}}$
Ans: (C)

Solution: $L=\lim _{x \rightarrow \frac{\pi}{4}} \frac{\sqrt{2} \cos x-1}{\cot x-1}=\lim _{x \rightarrow \frac{\pi}{4}} \frac{-\sqrt{2} \sin x}{-\operatorname{cosec}^{2} x}=\frac{1}{2}$
40. The negation of the statement
"For every real number $x ; x^{2}+5$ is positive" is
(A) For every real number $x ; x^{2}+5$ is not positive.
(B) For every real number $x ; x^{2}+5$ is negative.
(C) There exists at least one real number x such that $x^{2}+5$ is not positive.
(D) There exists at least one real number x such that $x^{2}+5$ is positive.

Ans. (C)
Remark: From DELETED Syllabus (Mathematical Reasoning)
41. Let $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ and e be the observations with mean m and standard deviation S . The standard deviation of the observations $\mathrm{a}+\mathrm{k}, \mathrm{b}+\mathrm{k}, \mathrm{c}+\mathrm{k}, \mathrm{d}+\mathrm{k}$ and $\mathrm{e}+\mathrm{k}$ is
(A) kS
(B) $\mathrm{S}+\mathrm{k}$
(C) $\frac{\mathrm{S}}{\mathrm{k}}$
(D) S

Ans. (D)
Solution: Standard deviation remains the same if we increase or decrease the items by a constant
42. Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ be given by $\mathrm{f}(\mathrm{x})=\tan \mathrm{x}$. Then $\mathrm{f}^{-1}(1)$ is
(A) $\frac{\pi}{4}$
(B) $\left\{n \pi+\frac{\pi}{4}: n \in Z\right\}$
(C) $\frac{\pi}{3}$
(D) $\left\{\mathrm{n} \pi+\frac{\pi}{3}: \mathrm{n} \in \mathrm{Z}\right\}$ Ans: (B)

Solution: Let $\mathrm{a} \in \mathrm{f}^{-1}(1) \Rightarrow \mathrm{f}(\mathrm{a})=1$ i.e. $\tan \mathrm{a}=1 \Rightarrow \mathrm{a}=\mathrm{n} \pi+\frac{\pi}{4}$
Remark: $\mathrm{f}^{-1}(\mathrm{~b})$ i.e. inverse of an element : From DELETED syllabus and also general solution of trig. equations. (Deleted)
43. Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ be defined by $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}+1$. Then the pre images of 17 and -3 respectively are
(A) $\phi,\{4,-4\}$
(B) $\{3,-3\}, \phi$
(C) $\{4,-4\}, \phi$
(D) $\{4,-4\},\{2,-2\}$
Ans: (C)

Solution: $x^{2}+1=17 \Rightarrow x= \pm 4 ; x^{2}+1 \neq-3$
\therefore (C) is the correct option
Remark: Inverse of an element is from the DELETED syllabus
44. Let $(\operatorname{gof})(x)=\sin x$ and $(f \circ g)(x)=(\sin \sqrt{x})^{2}$. Then
(A) $f(x)=\sin ^{2} x, g(x)=x$
(B) $f(x)=\sin \sqrt{x}, g(x)=\sqrt{x}$
(C) $f(x)=\sin ^{2} x, g(x)=\sqrt{x}$
(D) $f(x)=\sin \sqrt{x}, g(x)=x^{2}$

Ans. (C)
Solution: $(g o f)(x)=g(f(x))=\sin x=\sqrt{\sin ^{2} x}$, assuming, $\sin x>0$
$\therefore g(x)=\sqrt{x}, f(x)=\sin ^{2} x$ and $f(g(x))=\sin ^{2} g(x)=(\sin \sqrt{x})^{2}$
45. Let $A=\{2,3,4,5$ \qquad $16,17,18\}$. Let R be the relation on the set A of ordered pairs of positive integers defined by $(a, b) R(c, d)$ if and only if $a d=b c$ for all $(a, b),(c, d)$ in $A \times A$. Then the number of ordered pairs of the equivalence class of $(3,2)$ is
(A) 4
(B) 5
(C) 6
(D) 7

Ans. (C)
Solution: The given relation is the equality relation on "fractions" : $\frac{a}{b}=\frac{c}{d}$ if equivalence class of (3, 2)
$=\left\{(\mathrm{a}, \mathrm{b}): \frac{\mathrm{a}}{\mathrm{b}}=\frac{3}{2}\right\}: \frac{3}{2}=\frac{6}{4}=\frac{9}{6}=\frac{12}{8}=\frac{15}{10}=\frac{18}{12}$
$=\{(3,2),(6,4),(9,4),(12,8),(15,10),(18,12)\}$
Number of ordered points is 6
46. If $\cos ^{-1} x+\cos ^{-1} y+\cos ^{-1} z=3 \pi$, then $x(y+z)+y(z+x)+z(x+y)$ equals to
(A) 0
(B) 1
(C) 6
(D) 12
Ans. (C)

Solution: $0 \leq \cos ^{-1} x, \cos ^{-1} y, \cos ^{-1} z \leq \pi$ and $\cos ^{-1}(-1)=\pi$
\therefore By data, $\mathrm{x}=-1=\mathrm{y}=\mathrm{z} \quad \therefore$ G.E. $=2+2+2=6$
47. If $2 \sin ^{-1} x-3 \cos ^{-1} x=4, x \in[-1,1]$ then $2 \sin ^{-1} x+3 \cos ^{-1} x$ is equal to
(A) $\frac{4-6 \pi}{5}$
(B) $\frac{6 \pi-4}{5}$
(C) $\frac{3 \pi}{2}$
(D) 0

Ans. (B)
Solution: $2 \sin ^{-1} \mathrm{x}+3 \cos ^{-1} \mathrm{x}=2\left(\sin ^{-1} \mathrm{x}+\cos ^{-1} \mathrm{x}\right)+\cos ^{-1} \mathrm{x}=\pi+\cos ^{-1} \mathrm{x}$
Now, $2 \sin ^{-1} x-3 \cos ^{-1} x=4 \Rightarrow 2\left(\frac{\pi}{2}-\cos ^{-1} x\right)-3 \cos ^{-1} x=4$
$\therefore 5 \cos ^{-1} \mathrm{x}=\pi-4 \Rightarrow \cos ^{-1} \mathrm{x}=\frac{1}{5}(\pi-4)$
\therefore Required $=\pi+\frac{1}{5}(\pi-4)=\frac{6 \pi-4}{5}$
Remark: From DELETED Syllabus (Properties of Inv. Trig. Functions)
48. If A is a square matrix such that $A^{2}=A$, then $(I+A)^{3}$ is equal to
(A) $7 \mathrm{~A}-\mathrm{I}$
(B) 7 A
(C) $7 \mathrm{~A}+\mathrm{I}$
(D) I-7A

Ans. (C)
Solution: $A^{2}=A \Rightarrow A^{3}=A^{2}=A$
$(I+A)^{3}=I+3 A+3 A^{2}+A^{3}=I+3 A+3 A+A=7 A+I$
49. If $A=\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$, then A^{10} is equal to
(A) $2^{8} \mathrm{~A}$
(B) $2^{9} \mathrm{~A}$
(C) $2^{10} \mathrm{~A}$
(D) $2^{11} \mathrm{~A}$

Ans. (B)
Solution: Clearly, $A^{2}=2 A ; A^{3}=2 A^{2}=2^{2} A$
$\left\|\|^{\text {ly }}\right.$ proceeding, $A^{4}=2^{3} \mathrm{~A}, \ldots ., \mathrm{A}^{10}=2^{9} \mathrm{~A}$
50. If $f(x)=\left|\begin{array}{ccc}x-3 & 2 x^{2}-18 & 2 x^{3}-81 \\ x-5 & 2 x^{2}-50 & 4 x^{3}-500 \\ 1 & 2 & 3\end{array}\right|$, then $f(1) \cdot f(3)+f(3) \cdot f(5)+f(5) \cdot f(1)$ is
(A) -1
(B) 0
(C) 1
(D) 2
Ans. (*)

Solution : $\mathrm{f}(5)=0$ but $\mathrm{f}(1) \neq 0, \mathrm{f}(3) \neq 0$ (check)
\therefore G.E. $=\mathrm{f}(1) . \mathrm{f}(3)+0+0,|\mathrm{f}(1) \mathrm{f}(3)|>2$
\therefore None of the given options is the answer
Suppose $\mathrm{a}_{13}=3 \mathrm{x}^{3}-81$, then $\mathrm{f}(3)=0$ and hence $\Delta=0$
Remark: It is a FAULTY question from DELETED Syllabus (Properties of Determinants)
51. If $P=\left[\begin{array}{lll}1 & \alpha & 3 \\ 1 & 3 & 3 \\ 2 & 4 & 4\end{array}\right]$ is the adjoint of 3×3 matrix A and $|A|=4$, then α is equal to
(A) 4
(B) 5
(C) 11
(D) 0
Ans. (C)

Solution: $|\mathrm{P}|=1(12-12)-\alpha(4-6)+3(4-6)$
i.e., $|\mathrm{P}|=|\mathrm{A}|^{2}=16=0+2 \alpha-6 \Rightarrow \alpha=11$
52. If $A=\left|\begin{array}{cc}x & 1 \\ 1 & x\end{array}\right|$ and $B=\left|\begin{array}{ccc}x & 1 & 1 \\ 1 & x & 1 \\ 1 & 1 & x\end{array}\right|$, then $\frac{d B}{d x}$ is
(A) 3 A
(B) -3 B
(C) $3 \mathrm{~B}+1$
(D) $1-3 \mathrm{~A}$
Ans. (A)

Solution: $\mathrm{A}=\mathrm{x}^{2}-1 ; \mathrm{B}=\mathrm{x}\left(\mathrm{x}^{2}-1\right)-1(\mathrm{x}-1)+1(1-\mathrm{x})=\mathrm{x}^{3}-3 \mathrm{x}+2$
$\therefore \frac{\mathrm{dB}}{\mathrm{dx}}=3\left(\mathrm{x}^{2}-1\right)=3 \mathrm{~A}$
53. Let $f(x)=\left|\begin{array}{ccc}\cos x & x & 1 \\ 2 \sin x & x & 2 x \\ \sin x & x & x\end{array}\right|$. Then $\lim _{x \rightarrow 0} \frac{f(x)}{x^{2}}=$
(A) -1
(B) 0
(C) 3
(D) 2

Ans. (B)
Solution: $\frac{\mathrm{f}(\mathrm{x})}{\mathrm{x}^{2}}=\frac{1}{\mathrm{x}^{2}}\left|\begin{array}{ccc}\cos \mathrm{x} & \mathrm{x} & 1 \\ 2 \sin \mathrm{x} & \mathrm{x} & 2 \mathrm{x} \\ \sin \mathrm{x} & \mathrm{x} & \mathrm{x}\end{array}\right|=\left|\begin{array}{ccc}\cos \mathrm{x} & \mathrm{x} & 1 \\ \frac{2 \sin \mathrm{x}}{\mathrm{x}} & 1 & 2 \\ \frac{\sin \mathrm{x}}{\mathrm{x}} & 1 & 1\end{array}\right|$
$\lim _{x \rightarrow 0} \frac{f(x)}{x^{2}}=\left|\begin{array}{lll}1 & 0 & 1 \\ 2 & 1 & 2 \\ 1 & 1 & 1\end{array}\right|=1(1-2)+1(2-1)=0$
Aliter: Without using properties of determinants:
$f(x)=\cos x \cdot\left(x^{2}-2 x^{2}\right)-x(2 x \sin x-2 x \sin x)+(2 x \sin x-x \sin x)=-x^{2} \cos x+x \sin x$
$\lim _{x \rightarrow 0} \frac{f(x)}{x}=\lim _{x \rightarrow 0}\left(-\cos x+\frac{\sin x}{x}\right)=-1+1=0$
54. Which one of the following observations is correct for the features of logarithm function to any base $\mathrm{b}>1$?
(A) The domain of the logarithm function is R , the set of real numbers.
(B) The range of the logarithm function is R^{+}, the set of all positive real numbers.
(C) The point $(1,0)$ is always on the graph of the logarithm function.
(D) The graph of the logarithm function is decreasing as we move from left to right.

Ans. (C)
Solution: $\mathrm{y}=\log \mathrm{x}$ always satisfies $(1,0)$
55. The function $f(x)=|\cos x|$ is
(A) everywhere continuous and differentiable
(B) everywhere confinuous but not differentiable at odd multiples of $\frac{\pi}{2}$
(C) neither continuous nor differentiable at $(2 \mathrm{n}+1) \frac{\pi}{2}, \mathrm{n} \in \mathrm{Z}$
(D) not differentiable everywhere

Ans. (B)
Solution: We know that $|\mathrm{f}(\mathrm{x})|$ is continuous whenever $\mathrm{f}(\mathrm{x})$ is continuous but not differentiable whenever $\mathrm{f}(\mathrm{x})=0$
Here $\mathrm{f}(\mathrm{x})=\cos \mathrm{x}$ and hence $|\cos \mathrm{x}|$ is continuous but not differentiable whenever $\cos \mathrm{x}=0$
i.e., when x is an odd multiple of $\frac{\pi}{2}$
56. If $y=2 x^{3 x}$, then $\frac{d y}{d x}$ at $x=1$ is
(A) 2
(B) 6
(C) 3
(D) 1

Ans. (B)
Solution: $y=2 \cdot x^{3 x} \Rightarrow \frac{d y}{d x}=2\left[x^{3 x} \cdot \frac{d}{d x}(3 x \log x)\right]=2 \cdot x^{3 x}\left[3 \cdot \log x+3 x \cdot \frac{1}{x}\right]$
\therefore At $\mathrm{x}=1, \frac{\mathrm{dy}}{\mathrm{dx}}=2.1 .(3 \log 1+3)=6$
57. Let the function satisfy the equation $f(x+y)=f(x) f(y)$ for all $x, y \in R$, where $f(0) \neq 0$. If $f(5)=3$ and $f^{\prime}(0)=2$, then $f^{\prime}(5)$ is
(A) 6
(B) 0
(C) 5
(D) -6

Ans. (A)
Solution: $f(x+y)=f(x) f(y)$. Then $f(x)$ can be $a^{x} ; f(5)=a^{5}=3$
Then $\mathrm{f}^{\prime}(\mathrm{x})=\mathrm{a}^{\mathrm{x}} \log \mathrm{a} ; \mathrm{f}^{\prime}(0)=2 \Rightarrow \log \mathrm{a}=2$
$f^{\prime}(5)=a^{5} \log a=3(2)=6$
Aliter: $\mathrm{f}(\mathrm{x}+5)=\mathrm{f}(\mathrm{x}) . \mathrm{f}(5) \Rightarrow \mathrm{f}^{\prime}(\mathrm{x}+5)=\mathrm{f}^{\prime}(\mathrm{x}) . \mathrm{f}(5)$
Put $x=0: f^{\prime}(5)=f^{\prime}(0) . f(5)=2 \times 3=6$

Third method:

$$
\begin{aligned}
f^{\prime}(5) & =\lim _{h \rightarrow 0} \frac{f(5+h)-f(5)}{h} ; f(0)=1 \\
& =\lim _{h \rightarrow 0} \frac{f(5) \cdot f(h)-f(5)}{h}=\lim _{h \rightarrow 0} f(5) \cdot \frac{f(h)-1}{h}=f(5) \cdot f^{\prime}(0)=6
\end{aligned}
$$

58. The value of C in $(0,2)$ satisfying the mean value theorem for the function $\mathrm{f}(\mathrm{x})=\mathrm{x}(\mathrm{x}-1)^{2}, \mathrm{x} \in[0$, 2] is equal to
(A) $\frac{3}{4}$
(B) $\frac{4}{3}$
(C) $\frac{1}{3}$
(D) $\frac{2}{3}$
Ans. (B)

Solution: $\mathrm{f}^{\prime}(\mathrm{x})=1 .(\mathrm{x}-1)^{2}+\mathrm{x} \cdot 2(\mathrm{x}-1)=\mathrm{x}^{2}-2 \mathrm{x}+1+2 \mathrm{x}^{2}-2 \mathrm{x}=3 \mathrm{x}^{2}-4 \mathrm{x}+1$
$\mathrm{f}^{\prime}(\mathrm{c})=\frac{\mathrm{f}(2)-\mathrm{f}(0)}{2-0} \Rightarrow 3 \mathrm{c}^{2}-4 \mathrm{c}+1=\frac{2-0}{2-0}=1 \Rightarrow \mathrm{c}(3 \mathrm{c}-4)=0 \Rightarrow \mathrm{c}=\frac{4}{3} \in(0,2)$
Remark: This is from DELETED Syllabus.
59. $\frac{\mathrm{d}}{\mathrm{dx}}\left[\cos ^{2}\left(\cot ^{-1} \sqrt{\frac{2+\mathrm{x}}{2-\mathrm{x}}}\right)\right]$ is
(A) $-\frac{3}{4}$
(B) $-\frac{1}{2}$
(C) $\frac{1}{2}$
(D) $\frac{1}{4}$

Ans. (D)
Solution: $\cot ^{-1} \sqrt{\frac{2+\mathrm{x}}{2-\mathrm{x}}}=\theta \Rightarrow \cot \theta=\frac{\sqrt{2+\mathrm{x}}}{\sqrt{2-\mathrm{x}}}$
$\mathrm{y}=\cos ^{2}\left[\cot ^{-1} \sqrt{\frac{2+\mathrm{x}}{2-\mathrm{x}}}\right]=\cos ^{2} \theta=\frac{2+\mathrm{x}}{4} \quad \therefore \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{4}$
Aliter: put $\mathrm{x}=2 \cos \theta$. Then $\frac{2+\mathrm{x}}{2-\mathrm{x}}=\frac{2(1+\cos \theta)}{2(1-\cos \theta)}=\cot ^{2} \frac{\theta}{2}$

$\therefore y=\cos ^{2}\left(\cot ^{-1} \cot \frac{\theta}{2}\right)=\cos ^{2} \frac{\theta}{2}=\frac{1}{2}(1+\cos \theta)=\frac{1}{2}\left(1+\frac{x}{2}\right) \Rightarrow y^{\prime}=\frac{1}{4}$
60. For the function $f(x)=x^{3}-6 x^{2}+12 x-3 ; x=2$ is
(A) a point of minimum
(B) a point of inflexion
(C) not a critical point
(D) a point of maximum

Ans. (B)
Solution: $\mathrm{f}^{\prime}(\mathrm{x})=3 \mathrm{x}^{2}-12 \mathrm{x}+12 ; \mathrm{f}^{\prime \prime}(\mathrm{x})=6 \mathrm{x}-12 ; \mathrm{f}^{\prime \prime \prime}(\mathrm{x})=6 \neq 0$
$\mathrm{f}^{\prime}(2)=0=\mathrm{f}^{\prime \prime}(2) \quad \therefore \mathrm{x}=2$ is a point of inflexion.

