www.boscoss.com

MATHEMATICS KARNATAKA CET - 2024

Version:

KEY ANSWERS

1	C	16	C	31	C	46	C
2	В	17	D	32	В	47	В
3	D	18	A	33	A	48	C
4	A	19	C	34	A	49	В
5	D	20	A	35	В	50	*
6	В	21	C	36	D	51	C
7	C	22	A	37	C	52	A
8	A	23	D	38	A	53	В
9	C	24	C	39	C	54	C
10	В	25	В	40	C	55	В
11	D	26	В	41	D	56	В
12	D	27	C	42	В	57	A
13	A	28	В	43	C	58	B
14	C	29	В	44	C	59	D
15	В	30	C	45	C	60	В

- * : None of the given options
- The function x^X ; x > 0, is strictly increasing at

(A)
$$\forall x \in R$$
 (B) $x < \frac{1}{2}$ C) $x > \frac{1}{2}$

(B)
$$x < \frac{1}{e}$$

C)
$$x > \frac{1}{e}$$

(D)
$$x < 0$$

Ans: (C)

Solution:

$$\frac{d}{dx}(x^x) = x^x (1 + \log x)$$

$$\uparrow \Rightarrow x^{x} \left(1 + \log x \right) > 0 \Rightarrow \log x > -1 \therefore x > \frac{1}{e}$$

- The maximum volume of the right circular cone with slant height 6 units is
 - (A) 4 $\sqrt{3}\pi$ cubic units
- (B) $16\sqrt{3}\pi$ cubic units

(C) $3\sqrt{3}\pi$ cubic units

(D) 6 $\sqrt{3}\pi$ it cubic units

Ans: (B)

Solution: $V = \frac{1}{3}\pi r^2 h$; $l^2 = r^2 + h^2$

:.
$$V = \frac{1}{3}\pi h (l^2 - h^2) = \frac{1}{3}\pi (l^2 h - h^3)$$

$$\frac{dV}{dh} = 0 \Rightarrow 1^2 - 3h^2 = 0 \Rightarrow h = \frac{1}{\sqrt{3}} = \frac{6}{\sqrt{3}} = 2\sqrt{3}$$

Max V =
$$\frac{1}{3}\pi (6^2 \cdot 2\sqrt{3} - 24\sqrt{3}) = \frac{1}{3}\pi (48\sqrt{3}) = 16\pi\sqrt{3}$$

- 3. If $f(x) = x e^{x(1-x)}$ then f(x) is
 - (A) increasing in R

- (B) decreasing in R
- (C) decreasing in $\left| -\frac{1}{2}, 1 \right|$ (D) increasing in $\left| -\frac{1}{2}, 1 \right|$

Ans: (D)

Solution: $f'(x) = e^{x(1-x)} + x \cdot e^{x(1-x)} \cdot (1-2x)$

$$= e^{x(1-x)} (1 + x - 2x^2)$$

$$f(x)$$
 is $\uparrow \Rightarrow 1 + x - 2x^2 > 0$ $\therefore x \in \left[-\frac{1}{2}, 1\right]$

$$4. \quad \int \frac{\sin x}{3 + 4\cos^2 x} \, \mathrm{d}x =$$

$$(A) -\frac{1}{2\sqrt{3}} \tan^{-1} \left(\frac{2\cos x}{\sqrt{3}} \right) + C$$

B)
$$\frac{1}{\sqrt{3}} \tan^{-1} \left(\frac{\cos x}{3} \right) + C$$

C)
$$\frac{1}{2\sqrt{3}} \tan^{-1} \left(\frac{\cos x}{3} \right) + C$$

D)
$$-\frac{1}{\sqrt{3}}\tan^{-1}\left(\frac{2\cos x}{3}\right) + C$$

Ans: (A)

Solution:
$$I = -\frac{1}{2} \int \frac{d(2\cos x)}{3 + 4\cos^2 x} = -\frac{1}{2} \cdot \frac{1}{\sqrt{3}} \tan^{-1} \left(\frac{2\cos x}{\sqrt{3}}\right) + C$$

5.
$$\int_{-\pi}^{\pi} (1 - x^2) \sin x \cdot \cos^2 x \, dx =$$

(A)
$$\pi - \frac{\pi^2}{2}$$

(B)
$$2\pi - \pi^3$$

(B)
$$2\pi - \pi^3$$
 (C) $\pi - \frac{\pi^3}{2}$

Ans: (D)

Solution: $(1-x^2) \sin x$. $\cos^2 x$ is an odd function of x

$$\therefore \int_{-\pi}^{\pi} (1 - x^2) \sin x \cdot \cos^2 x \, dx = 0$$

6.
$$\int \frac{1}{x[6(\log x)^2 + 7\log x + 2]} dx =$$

A)
$$\frac{1}{2} \log \left| \frac{2 \log x + 1}{3 \log x + 2} \right| + C$$

B)
$$\log \left| \frac{2 \log x + 1}{3 \log x + 2} \right| + C$$

C)
$$\log \left| \frac{3 \log x + 2}{2 \log x + 1} \right| + C$$

D)
$$\frac{1}{2} \log \left| \frac{3 \log x + 1}{3 \log x + 2} \right| + C$$

Ans: (B)

Solution: Put $t = \log x$

Then I =
$$\int \frac{dt}{6t^2 + 7t + 2}$$
; $6t^2 + 7t + 2 = 6t^2 + 4t + 3t + 2 = (3t + 2)(2t + 1)$
= $\int \frac{dt}{(3t + 2)(2t + 1)}$
= $\int \left(\frac{A}{(3t + 2)} + \frac{B}{(2t + 1)}\right) dt$; $A = \frac{1}{2\left(-\frac{2}{3}\right) + 1} = -3$
= $\int \left(\frac{-3}{(3t + 2)} + \frac{2}{(2t + 1)}\right) dt$; $B = \frac{1}{3\left(-\frac{1}{2}\right) + 2} = 2$
= $-\log(3t + 2) + \log(2t + 1)$
= $\log\frac{2t + 1}{3t + 2} + C$

$$7. \int \frac{\sin \frac{5x}{2}}{\sin \frac{x}{2}} dx =$$

$$A) 2x + \sin x + 2\sin 2x + C$$

B)
$$x + 2 \sin x + 2 \sin 2x + C$$

C)
$$x + 2 \sin x + \sin 2x + C$$

D)
$$2x + \sin x + \sin 2x + C$$

Ans: (C)

Solution:
$$\frac{\sin\frac{5x}{2}}{\sin\frac{x}{2}} = \frac{\sin\frac{5x}{2}\cos\frac{x}{2}}{\sin\frac{x}{2}\cos\frac{x}{2}} = \frac{\sin 3x + \sin 2x}{\sin x}$$
$$= \frac{3\sin x - 4\sin^3 x + 2\sin x\cos x}{\sin x} = 3 - 4 \cdot \frac{1}{2}(1 - \cos 2x) + 2\cos x = 1 + 2\cos 2x + 2\cos x$$

$$\therefore I = x + \sin 2x + 2 \sin x + C$$

8.
$$\int_{1}^{5} (|x-3|+|1-x|) dx =$$

B)
$$\frac{5}{6}$$

Ans: (A)

Solution:
$$I = \int_{1}^{5} |x - 3| d(x - 3) + \int_{1}^{5} |x - 1| d(x - 1)$$

$$= \frac{1}{2}(x-3)|x-3|^{5} + \frac{1}{2}(x-1)|x-1|^{5} = \frac{1}{2}(4+4) + \frac{1}{2}(16+0) = 4+8 = 12$$

9.
$$\lim_{n \to \infty} \left(\frac{n}{n^2 + 1^2} + \frac{n}{n^2 + 2^2} + \frac{n}{n^2 + 3^2} + \dots + \frac{1}{(5n)} \right) =$$

A)
$$\frac{\pi}{4}$$

3)
$$tan^{-1} 2$$

D)
$$\frac{\pi}{2}$$

Ans: (C)

Solution:
$$L = \lim_{n \to \infty} \sum_{r=1}^{2n} \frac{n}{n^2 + r^2}$$
; $\frac{1}{5n} = \frac{n}{n^2 + (2n)^2}$

$$= \operatorname{Lt}_{n \to \infty} \sum_{r=1}^{2n} \frac{1}{n} \cdot \frac{1}{1 + \left(\frac{r}{n}\right)^2} = \int_0^2 \frac{1}{1 + x^2} dx = \tan^{-1} x \Big|_0^2 = \tan^{-1} 2$$

Remark: This question is from the DELETED syllabus (integration as summation)

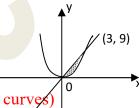
10. The area of the region bounded by the line y = 3x and the curve $y = x^2$ in sq. units is

B)
$$\frac{9}{2}$$

Ans: (B)

Solution:
$$A = \int_0^3 (3x - x^2) dx$$

$$= \left(3\frac{x^2}{2} - \frac{x^3}{3}\right)\Big|_0^3 = \frac{27}{2} - \frac{27}{3} = 27 \cdot \frac{1}{6} = \frac{9}{2}$$

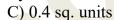


Remark: This is also from the DELETED syllabus (area between curve

11. The area of the region bounded by the line y = x and the curve $y = x^3$ is

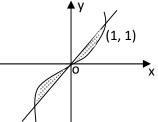
A) 0.2 sq. units

B) 0.3 sq. units



Solution:
$$A = 2 \int_{0}^{1} (x - x^{3}) dx$$

$$A = 2\left[\frac{x^2}{2} - \frac{x^4}{4}\right]_0^1 = 2\left[\frac{1}{2} - \frac{1}{4}\right] = \frac{1}{2} = 0.5$$



Remark: This is also from the DELETED syllabus (area between curves)

12. The solution of $e^{\frac{dy}{dx}} = x + 1$, y(0) = 3 is

$$(A) y - 2 = x \log x - x$$

(B)
$$y - x - 3 = x \log x$$

(A)
$$y-2 = x \log x - x$$

(C) $y-x-3 = (x+1) \log (x+1)$

(B)
$$y-x-3 = x \log x$$

(D) $y+x-3 = (x+1)\log(x+1)$

Solution: $e^{\frac{dy}{dx}} = x + 1 \Rightarrow \frac{dy}{dx} = \log(x + 1)$

$$\therefore y = \int \log(x+1)d(x+1) = \log(x+1) \cdot (x+1) - \int \frac{1}{x+1} \cdot (x+1)dx$$

$$= (x+1)\log(x+1) - x + c$$

$$y(0) = 3 \Rightarrow 3 = 0 - 0 + c \Rightarrow c = 3$$

$$\therefore y = (x+1)\log(x+1) - x + 3 \text{ i.e. } y + x - 3 = (x+1)\log(x+1)$$

•	urves whose x and y in es of that point is	tercepts of a tangent	at any point are re	espectively double the x
(A) xy = C	(B) $x^2 + y^2 = C$	$(C) x^2 - y^2 = C$	(D) $\frac{y}{x} = C$	Ans: (A)

Solution: Equation of tangent at
$$(x_1, y_1)$$
; $y - y_1 = m(x - x_1)$; $m = \left(\frac{dy}{dx}\right)_{(x_1, y_1)}$
By data $(2x_1, 0)$ and $(0, 2y_1)$ lie on it $\Rightarrow -y_1 = mx_1 \Rightarrow m = \frac{-y_1}{x_1} \left[also, y_1 = m(-x_1) \right]$

Thus,
$$\frac{dy}{dx}$$
 at (x, y) is $\frac{-y}{x}$ i.e. $\frac{dy}{dx} = \frac{-y}{x}$
 $\Rightarrow x dy + y dx = 0$ i.e. $d(xy) = 0$ $\therefore xy = C$

Remark: From DELETED syllabus (tangent and normal)

- 14. The vectors $\overrightarrow{AB} = 3\hat{i} + 4\hat{k}$ and $\overrightarrow{AC} = 5\hat{i} 2\hat{j} + 4\hat{k}$ are the sides of a \triangle ABC. The length of the median through A is
 - (B) $\sqrt{72}$ (C) $\sqrt{33}$ (A) $\sqrt{18}$ **Solution:** $\overrightarrow{AD} = \frac{1}{2} (\overrightarrow{AB} + \overrightarrow{AC}) = \frac{1}{2} (8i - 2j + 8k) = 4i - j + 4k$

$$\therefore AD = \left| \overrightarrow{AD} \right| = \sqrt{16 + 1 + 16} = \sqrt{33}$$

15. The volume of the parallelopiped whose co-terminous edges are $\hat{j} + \hat{k}$, $\hat{i} + \hat{k}$ and $\hat{i} + \hat{j}$ is

(A) 6 cu. units (B) 2 cu. Units (C) 4 cu. units

(D) 3 cu. Units

Ans: (B) Solution: Required = [i + j j + k k + i]= 2[i j k] = 2 cu units

Remark: From DELETED syllabus (Scalar triple product of vectors)

16. Let \vec{a} and \vec{b} be two unit vectors and θ is the angle between them. Then $\vec{a} + \vec{b}$ is a unit vector if

(A) $\theta = \frac{\pi}{4}$

(B)
$$\theta = \frac{\pi}{3}$$

(B)
$$\theta = \frac{\pi}{3}$$
 (C) $\theta = \frac{2\pi}{3}$ (D) $\theta = \frac{\pi}{2}$ Ans: (C)

(D)
$$\theta = \frac{\pi}{2}$$

(D) $\sqrt{288}$

Ans: (C)

Solution: $|\vec{a} + b| = 2\cos\frac{\theta}{2} \Rightarrow \cos\frac{\theta}{2} = \frac{1}{2}$: $\theta = \frac{2\pi}{2}$

17. If \vec{a} , \vec{b} , \vec{c} are three non-coplanar vectors and p, q, r are vectors defined by

 $\vec{p} = \frac{\vec{b} \times \vec{c}}{[\vec{a} \ \vec{b} \ \vec{c}]}, \ \vec{q} = \frac{\vec{c} \times \vec{a}}{[\vec{a} \ \vec{b} \ \vec{c}]}, \ \vec{r} = \frac{\vec{a} \times \vec{b}}{[\vec{a} \ \vec{b} \ \vec{c}]}, \text{ then } (\vec{a} + \vec{b}) \cdot \vec{p} + (\vec{b} + \vec{c}) \cdot \vec{q} + (\vec{c} + \vec{a}) \cdot \vec{r} \text{ is}$

(D) 3 Ans: (D)

Solution: $\vec{a} \cdot \vec{p} = \vec{q} \cdot \vec{b} = \vec{r} \cdot \vec{c} = 1$

$$\vec{b}$$
 . $\vec{p}=\vec{c}$. $\vec{q}=\vec{a}$. $\vec{r}=0$

 \therefore G. E. = 3

Remark: From DELETED syllabus (Scalar triple product of vectors)

18. If lines $\frac{x-1}{-3} = \frac{y-2}{2k} = \frac{z-3}{2}$ and $\frac{x-1}{3k} = \frac{y-5}{1} = \frac{z-6}{-5}$ are mutually perpendicular, then k is equal to

(A) $-\frac{10}{7}$ (B) $-\frac{7}{10}$

(B)
$$-\frac{7}{10}$$

$$(C) -10$$

$$(D) - 7$$

(D) -7 **Ans: (A)**

Solution: (-3)(3k) + (2k)(1) + 2(-5) = 0

$$\therefore 7k = -10 \therefore k = \frac{-10}{7}$$

19. The distance be	•	$x^{2} + 3y + 4z = 4$ and	•	
(A) 2 units	(B) 8 units	(C) $\frac{2}{\sqrt{29}}$ units	(D) 4 units	Ans: (C)
Solution: Requ	$ired = \frac{6 - 4}{\sqrt{4 + 9 + 16}} =$	$=\frac{2}{\sqrt{29}}$		
Remark: From	n DELETED syllabu	s (The plane)		

20. The sine of the angle between the straight line $\frac{x-2}{3} = \frac{y-3}{4} = \frac{4-z}{-5}$ and the plane 2x - 2y + z = 5 is

(A) $\frac{1}{5\sqrt{2}}$ (B) $\frac{2}{5\sqrt{2}}$ (C) $\frac{3}{50}$ (D) $\frac{3}{\sqrt{50}}$ Ans: (A) Solution: $\sin \theta = \frac{|ab + bm + cn|}{\sqrt{\sum a^2} \sqrt{\sum 1^2}} = \frac{|6 - 8 + 5|}{\sqrt{9 + 16 + 25} \sqrt{4 + 4 + 1}} = \frac{3}{\sqrt{50.3}} = \frac{1}{\sqrt{50}} = \frac{1}{5\sqrt{2}}$

Remark: From DELETED syllabus (The plane)

21. The equation xy = 0 in three-dimensional space represents

(A) a pair of straight lines

(B) a plane

(C) a pair of planes at right angles

(D) a pair of parallel planes

Ans: (C)

Solution: $xy = 0 \Rightarrow x = 0$ and y = 0 i.e. y - z plane and z - x plane; \bot planes.

Ans: (A)

22. The plane containing the point (3, 2, 0) and the line $\frac{x-3}{1} = \frac{y-6}{5} = \frac{z-4}{4}$ is

(A) x - y + z = 1 (B) x + y + z = 5 (C) x + 2y - z = 1 (D) 2x - y + z = 5Solution: $\begin{vmatrix} x - 3 & y - 6 & z - 4 \\ 0 & -4 & -4 \\ 1 & 5 & 4 \end{vmatrix} = 0 \Rightarrow x - y + z = 1$

Aliter: The point (3, 2, 0) satisfies (A) and (D)

But $a_1a_2 + b_1b_2 + c_1c_2 = 0$, only for (A); (1) (1) + 5(-1) + (1) (4) = 0

Remark: From DELETED syllabus (The plane)

23. Corner points of the feasible region for an LPP are (0, 2), (3, 0), (6, 0), (6, 8) and (0, 5). Let z = 4x + 6y be the objective function. The minimum value of z occurs at

(A) Only (0, 2)

(B) Only (3, 0)

(C) The mid-point of the line segment joining the points (0, 2) and (3, 0)

(D) Any point on the line segment joining the points (0, 2) and (3, 0)

Ans: (D)

Solution: Z(0, 2) = 12; Z(3, 0) = 12; other Z values are obviously more than 12 Z_{min} occurs at (0, 2) and (3, 0) and hence at every point on the line segment joining them.

24. A die is thrown 10 times. The probability that an odd number will come up at least once is

(A) $\frac{11}{1024}$ (B) $\frac{1013}{1024}$ (C) $\frac{1023}{1024}$ (D) $\frac{1}{1024}$ Ans: (C) Solution: P(atleast one) = 1 – P(none)

$$=1-\left(\frac{1}{2}\right)^{10}=\frac{1023}{1024}$$

Remark: From DELETED syllabus (Binomial Distribution)

25. A random variable X has the following probability distribution

X	0	1	2
P(X)	$\frac{25}{36}$	k	$\frac{1}{36}$

If the mean of the random variable X is $\frac{1}{3}$, then the variance is

(A) $\frac{1}{18}$

(B) $\frac{5}{18}$ (C) $\frac{7}{18}$ (D) $\frac{11}{18}$ Ans: (B)

Solution: $\sum p(x) = 1 \Rightarrow \frac{25}{36} + k + \frac{1}{36} = 1 \Rightarrow k = \frac{10}{36} = \frac{5}{18}$

$$\sigma^2 = \sum px^2 - (\overline{x})^2 = \left(0 + \frac{5}{18} \cdot 1^2 + \frac{1}{36} \cdot 4\right) - \left(\frac{1}{3}\right)^2 = \frac{5}{18}$$

Remark: From DELETED syllabus (Probability Distribution)

26. If a random variable X follows the binomial distribution with parameters n = 5, p and P(X = 2) =9P(X = 3), then p is equal to

(C) 5

(D) $\frac{1}{5}$

Ans: (**B**)

Solution: $P(x) = {}^{n}C_{x} p^{x} q^{n-x}; p+q=1$

$$p(x = 2) = 9p(x = 3) \Rightarrow {}^{5}C_{2}p^{2}q^{3} = 9.{}^{5}C_{3}p^{3}q^{2} \Rightarrow q = 9p \text{ i.e.} 1 - p = 9p \Rightarrow p = \frac{1}{10}$$

Remark: From DELETED syllabus (Binomial Distribution)

27. Two finite sets have in and n elements respectively. The total number of subsets of the first set is 56 more than the total number of subsets of the second set. The values of m and n respectively are

(A) 7, 6

(D) 8, 7

Ans: (C)

Solution: $2^m - 2^n = 56 = 8 \times 7 = 2^6 - 2^3 \Rightarrow m = 6, n = 3$

28. If $[x]^2 - 5[x] + 6 = 0$, where [x] denotes the greatest integer function, then

(A) $x \in [3, 4]$ (B) $x \in [2, 4)$ (C) $x \in [2, 3]$

(D) $x \in (2, 3]$

Ans: (**B**)

Solution: [x] = 2 or 3 : $x \in [2, 4)$

29. If in two circles, arcs of the same length subtend angles 30° and 78° at the centre, then the ratio of their radii is

(A) $\frac{5}{13}$

(B) $\frac{13}{5}$

(D) $\frac{4}{12}$

Ans: (**B**)

Solution: $\frac{\mathbf{r}_1}{\mathbf{r}_2} = \frac{\theta_2}{\theta_1} = \frac{78}{30} = \frac{13}{5}$ (because it is a ratio)

30. If $\triangle ABC$ is right angled at C, then the value of tan A + tan B is

(A) a + b

Solution: $\tan A + \tan B = \frac{a}{b} + \frac{b}{a} = \frac{a^2 + b^2}{ab} = \frac{c^2}{ab}$

(D) $\frac{c^2}{ac}$ Ans; (C)

31. The real value of ' α ' for which $\frac{1-i\sin\alpha}{1+2i\sin\alpha}$ is purely real is

(A) $(n+1)\frac{\pi}{2}$, $n \in \mathbb{N}$ (B) $(2n+1)\frac{\pi}{2}$, $n \in \mathbb{N}$ (C) $n\pi$, $n \in \mathbb{N}$ (D) $(2n-1)\frac{\pi}{2}$, $n \in \mathbb{N}$ Ans. (C)

Solution: $Z = \frac{(1 - i \sin \alpha) (1 - 2i \sin \alpha)}{1 + 4 \sin^2 \alpha} = \frac{() - 3i \sin \alpha}{()}$

Z is purely real $\Rightarrow \frac{-3 \sin \alpha}{1 + 4 \sin^2 \alpha} = 0 \Rightarrow \sin \alpha = 0$ $\therefore \alpha = n\pi$

Aliter: When $\alpha = 0$, Z is real

And $\alpha = 0$ is included only in (C)

- 32. The length of a rectangle is five times the breadth. If the minimum perimeter of the rectangle is 180 cm, then
 - (A) Breadth ≤ 15 cm
- (B) Breadth ≥ 15 cm (C) Length ≤ 15 cm
- (D) Length = 15 cm

Ans. (B)

Solution : l = 5b

$$P = 2(5b + b) = 12b \ge 180 \Rightarrow b \ge 15$$

- 33. The value of ${}^{49}C_3 + {}^{48}C_3 + {}^{47}C_3 + {}^{46}C_3 + {}^{45}C_3 + {}^{45}C_4$ is (A) ${}^{50}C_4$ (B) ${}^{50}C_3$ (C) ${}^{50}C_2$ **Solution:** Use ${}^{n}C_r + {}^{n}C_{r-1} = {}^{n+1}C_r$ ${}^{45}C_3 + {}^{45}C_4 = {}^{46}C_4$; ${}^{46}C_4 + {}^{46}C_3 = {}^{47}C_4$; ${}^{47}C_3 + {}^{47}C_4 = {}^{48}C_4$ etc Ans. (A)
- 34. In the expansion of $(1 + x)^n$

$$\frac{C_1}{C_0} + 2\frac{C_2}{C_1} + 3\frac{C_3}{C_2} + \dots + n\frac{C_n}{C_{n-1}}$$
 is equal to

- $(A) \frac{n(n+1)}{2} \qquad (B) \frac{n}{2}$
- (C) $\frac{n+1}{2}$
- (D) 3n(n+1) **Ans:** (A)

Solution: $\frac{C_r}{C_{r-1}} = \frac{{}^nC_r}{{}^nC_{r-1}} = \frac{n-r+1}{r}$

$$\therefore \text{ G.E.} = \sum_{r=1}^{n} r \cdot \frac{\left(n-r+1\right)}{r} = \sum_{r=1}^{n} \left(n-r+1\right) = n + \left(n-1\right) + \dots + 1 = \frac{n\left(n+1\right)}{2}$$

Aliter: Put n = 1: Then G.E. = $\frac{{}^{1}C_{1}}{{}^{1}C}$ = 1

Option (A): =
$$\frac{{}^{1}C_{1+1}}{2} = 1$$
 (C) $\frac{1+1}{2} = 1$ satisfy

Put n = 2: Then G.E. =
$$\frac{{}^{2}C_{1}}{{}^{2}C_{0}} + 2 \cdot \frac{{}^{2}C_{2}}{{}^{2}C_{1}} = \frac{2}{1} + 2 \cdot \frac{1}{2} = 3$$
; Only A satisfies

Remark: From DELETED Syllabus (Binomial Coefficients)

35. If S_n stands for sum to n-terms of a G.P. with 'a' as the first term and 'r' as the common ratio then S_n: S_{2n} is

(A)
$$r^{n} + 1$$

(B)
$$\frac{1}{r^{n}+1}$$

(C)
$$r^{n} - 1$$

(D)
$$\frac{1}{r^n-1}$$
 Ans. (B)

Solution:
$$\frac{S_n}{S_{2n}} = \frac{\frac{a(r^n - 1)}{r - 1}}{\frac{a(r^{2n} - 1)}{r - 1}} = \frac{r^n - 1}{(r^n + 1)(r^n - 1)} = \frac{1}{r^n + 1}$$

Aliter: Put n = 1

Then
$$\frac{S_n}{S_{2n}} = \frac{S_1}{S_2} = \frac{a}{a+ar} = \frac{1}{1+r}$$
; (B) alone gives $\frac{1}{r+1}$ when $n=1$

36. If A.M. and G.M. of roots of a quadratic equation are 5 and 4 respectively, then the quadratic

equation is (A)
$$x^2 - 10x - 16 = 0$$

(B)
$$x^2 + 10x + 16 = 0$$

$$(C) x^2 + 10x - 16 = 0$$

(B)
$$x^2 + 10x + 16 = 0$$

(D) $x^2 - 10x + 16 = 0$ **Ans: (D)**

(C) $x^2 + 10x - 16 = 0$ Solution: $x^2 - 2Ax + G^2 = 0$ i.e. $x^2 - 10x + 16 = 0$

37.	The angle between the	line $x + y = 3$ and	the line joining the points	s(1, 1) and $(-3, 4)$ is
	O	-	3 0 1	

(A)
$$tan^{-1}$$
 (7)

(B)
$$\tan^{-1}\left(-\frac{1}{7}\right)$$

(C)
$$\tan^{-1}\left(\frac{1}{7}\right)$$

(A)
$$\tan^{-1}(7)$$
 (B) $\tan^{-1}\left(-\frac{1}{7}\right)$ (C) $\tan^{-1}\left(\frac{1}{7}\right)$ (D) $\tan^{-1}\left(\frac{2}{7}\right)$ Ans. (C)

Solution:
$$m_1 = -1$$
; $m_2 = \frac{4-1}{-3-1} = -\frac{3}{4}$

$$\tan \theta = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right| = \left| \frac{-1 + \frac{3}{4}}{1 + \frac{3}{4}} \right| = \left| -\frac{1}{7} \right| = \frac{1}{7} :: \theta = \tan^{-1} \frac{1}{7}$$

Note: If we apply
$$\tan \theta = \frac{m_1 - m_2}{1 + m_1 m_2}$$
 gives $\tan \theta = -\frac{1}{7}$

$$\therefore \theta = \pi - \tan^{-1} \frac{1}{7}$$
 is the obtuse angle between the lines

$$\therefore \theta = \tan^{-1} \left(-\frac{1}{7} \right) \in \left(-\frac{\pi}{2}, 0 \right) \text{ can't be the correct option}$$

38. The equation of parabola whose focus is
$$(6, 0)$$
 and directrix is $x = -6$ is

(A)
$$y^2 = 24x$$

(B)
$$y^2 = -24x$$

(C)
$$x^2 = 24y$$

(D)
$$x^2 = -24y$$

(A) $y^2 = 24x$ (B) $y^2 = -24x$ (C) $x^2 = 24y$ (D) $x^2 = -24y$ **Solution:** Standard form I: $y^2 = 4ax$; a = 6 \therefore $y^2 = 24x$

39.
$$\lim_{x \to \frac{\pi}{4}} \frac{\sqrt{2} \cos x - 1}{\cot x - 1}$$
 is equal to

(B)
$$\sqrt{2}$$

(C)
$$\frac{1}{2}$$

(D)
$$\frac{1}{\sqrt{2}}$$

Solution:
$$L = \lim_{x \to \frac{\pi}{4}} \frac{\sqrt{2} \cos x - 1}{\cot x - 1} = \lim_{x \to \frac{\pi}{4}} \frac{-\sqrt{2} \sin x}{-\cos ec^2 x} = \frac{1}{2}$$

40. The negation of the statement

"For every real number x; $x^2 + 5$ is positive" is

- (A) For every real number x; $x^2 + 5$ is not positive.
- (B) For every real number x; $x^2 + 5$ is negative.
- (C) There exists at least one real number x such that $x^2 + 5$ is not positive.
- (D) There exists at least one real number x such that $x^2 + 5$ is positive. Ans. (C)

Remark: From DELETED Syllabus (Mathematical Reasoning)

41. Let a, b, c, d and e be the observations with mean m and standard deviation S. The standard deviation of the observations a + k, b + k, c + k, d + k and e + k is

(B)
$$S + k$$

(C)
$$\frac{S}{k}$$

Ans. (D)

Solution: Standard deviation remains the same if we increase or decrease the items by a constant

42. Let
$$f: R \to R$$
 be given by $f(x) = \tan x$. Then $f^{-1}(1)$ is

(A)
$$\frac{\pi}{4}$$

(B)
$$\left\{ n\pi + \frac{\pi}{4} : n \in Z \right\}$$

(C)
$$\frac{\pi}{3}$$

(B)
$$\left\{ n\pi + \frac{\pi}{4} : n \in Z \right\}$$
 (C) $\frac{\pi}{3}$ (D) $\left\{ n\pi + \frac{\pi}{3} : n \in Z \right\}$ Ans: (B)

Solution: Let
$$a \in f^{-1}(1) \Rightarrow f(a) = 1$$
 i.e. $\tan a = 1 \Rightarrow a = n\pi + \frac{\pi}{4}$

Remark: $f^{-1}(b)$ i.e. inverse of an element: From DELETED syllabus and also general solution of trig. equations. (Deleted)

43. Let $f: R \to R$ be defined by $f(x) = x^2 + 1$. Then the pre images of 17 and – 3 respectively are

(B)
$$\{3, -3\}, \phi$$

(C)
$$\{4, -4\}, \phi$$

(D)
$$\{4, -4\}, \{2, -2\}$$

(A) ϕ , $\{4, -4\}$ (B) $\{3, -3\}$, ϕ (C) $\{4, -4\}$, ϕ (D) $\{4, -4\}$, $\{2, -2\}$ **Solution:** $\mathbf{x}^2 + 1 = 17 \Rightarrow \mathbf{x} = \pm 4$; $\mathbf{x}^2 + 1 \neq -3$

$$\therefore$$
 (C) is the correct option

Remark: Inverse of an element is from the DELETED syllabus

```
44. Let (gof) (x) = sin x and (fog) (x) = (sin \sqrt{x})<sup>2</sup>. Then
       (A) f(x) = \sin^2 x, g(x) = x

(B) f(x) = \sin \sqrt{x}, g(x) = \sqrt{x}

(C) f(x) = \sin^2 x, g(x) = \sqrt{x}

(D) f(x) = \sin \sqrt{x}, g(x) = x^2
       (C) f(x) = \sin^2 x, g(x) = \sqrt{x}
                                                                      (D) f(x) = \sin \sqrt{x}, g(x) = x^2
                                                                                                                                  Ans. (C)
       Solution: (gof) (x) = g(f(x)) = \sin x = \sqrt{\sin^2 x}, assuming, \sin x > 0
       \therefore g(x) = \sqrt{x}, \ f(x) = \sin^2 x \text{ and } f(g(x)) = \sin^2 g(x) = (\sin \sqrt{x})^2
45. Let A = \{2, 3, 4, 5, \dots, 16, 17, 18\}. Let R be the relation on the set A of ordered pairs of positive
       integers defined by (a, b) R (c, d) if and only if ad = bc for all (a, b), (c, d) in A \times A. Then the
       number of ordered pairs of the equivalence class of (3, 2) is
                                                                                                                                                      Ans. (C)
                                       (B) 5
       Solution: The given relation is the equality relation on "fractions": \frac{a}{b} = \frac{c}{d} if equivalence class of (3,
       = \left\{ (a,b) : \frac{a}{b} = \frac{3}{2} \right\} : \frac{3}{2} = \frac{6}{4} = \frac{9}{6} = \frac{12}{8} = \frac{15}{10} = \frac{18}{12}
       = \{(3, 2), (6, 4), (9, 4), (12, 8), (15, 10), (18, 12)\}
       Number of ordered points is 6
46. If \cos^{-1} x + \cos^{-1} y + \cos^{-1} z = 3\pi, then x (y + z) + y (z + x) + z (x + y) equals to
       (A) 0 (B) 1 (C) 6

Solution: 0 \le \cos^{-1} x, \cos^{-1} y, \cos^{-1} z \le \pi \text{ and } \cos^{-1}(-1) = \pi

\therefore By data, x = -1 = y = z \therefore G.E. = 2 + 2 + 2 = 6
                                                                                                                                  Ans. (C)
47. If 2 \sin^{-1} x - 3 \cos^{-1} x = 4, x \in [-1, 1] then 2 \sin^{-1} x + 3 \cos^{-1} x is equal to (A) \frac{4-6\pi}{5} (B) \frac{6\pi-4}{5} (C) \frac{3\pi}{2} (D) 0 Solution: 2 \sin^{-1} x + 3 \cos^{-1} x = 2 (\sin^{-1} x + \cos^{-1} x) + \cos^{-1} x = \pi + \cos^{-1} x
                                                                                                                                  Ans. (B)
       Now, 2 \sin^{-1} x - 3 \cos^{-1} x = 4 \Rightarrow 2 \left( \frac{\pi}{2} - \cos^{-1} x \right) - 3 \cos^{-1} x = 4
       \therefore 5 \cos^{-1} x = \pi - 4 \Rightarrow \cos^{-1} x = \frac{1}{5} (\pi - 4)
       :. Required = \pi + \frac{1}{5}(\pi - 4) = \frac{6\pi - 4}{5}
Remark: From DELETED Syllabus (Properties of Inv. Trig. Functions) 48. If A is a square matrix such that A^2 = A, then (I + A)^3 is equal to
       (A) 7A - I
                                                                        (C) 7A + I
                                                                                                                                                      Ans. (C)
       Solution: A^2 = A \Rightarrow A^3 = A^2 = A

(I + A)^3 = I + 3A + 3A^2 + A^3 = I + 3A + 3A + A = 7A + I
49. If A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, then A^{10} is equal to
       (A) 2^8 A (B) 2^9 A (C) 2^{10} A Solution: Clearly, A^2 = 2A; A^3 = 2A^2 = 2^2 A \| \|^{19} proceeding, A^4 = 2^3 A, ...., A^{10} = 2^9 A
                                                                                               (D) 2^{11} A
                                                                                                                                                      Ans. (B)
50. If f(x) = \begin{vmatrix} x-3 & 2x^2-18 & 2x^3-81 \\ x-5 & 2x^2-50 & 4x^3-500 \\ 1 & 2 & 3 \end{vmatrix}, then f(1) \cdot f(3) + f(3) \cdot f(5) + f(5) \cdot f(1) is
       (A) -1
                                                                                                        (D) 2
                                                                                                                                  Ans. (*)
                                       (B) 0
                                                                        (C) 1
       Solution : f(5) = 0 but f(1) \neq 0, f(3) \neq 0 (check)
       \therefore G.E. = f(1) . f(3) + 0 + 0 , |f(1) f(3)| > 2
       :. None of the given options is the answer
       Suppose a_{13} = 3x^3 - 81, then f(3) = 0 and hence \Delta = 0
Remark: It is a FAULTY question from DELETED Syllabus (Properties of Determinants)
```

51. If
$$P = \begin{bmatrix} 1 & \alpha & 3 \\ 1 & 3 & 3 \\ 2 & 4 & 4 \end{bmatrix}$$
 is the adjoint of a 3×3 matrix A and $|A| = 4$, then α is equal to

Solution:
$$|P| = 1(12 - 12) - \alpha (4 - 6) + 3(4 - 6)$$

i.e., $|P| = |A|^2 = 16 = 0 + 2\alpha - 6 \Rightarrow \alpha = 11$

52. If
$$A = \begin{vmatrix} x & 1 \\ 1 & x \end{vmatrix}$$
 and $B = \begin{vmatrix} x & 1 & 1 \\ 1 & x & 1 \\ 1 & 1 & x \end{vmatrix}$, then $\frac{dB}{dx}$ is

(A)
$$3A$$
 (B) $-3B$ (C) $3B+1$ (D) $1-3A$ Ans. (A) Solution: $A = x^2 - 1$; $B = x(x^2 - 1) - 1(x - 1) + 1(1 - x) = x^3 - 3x + 2$

Solution:
$$A = x^2 - 1$$
; $B = x(x^2 - 1) - 1(x - 1) + 1(1 - x) = x^3 - 3x + 2$

$$\therefore \frac{dB}{dx} = 3(x^2 - 1) = 3A$$

53. Let
$$f(x) = \begin{vmatrix} \cos x & x & 1 \\ 2\sin x & x & 2x \\ \sin x & x & x \end{vmatrix}$$
. Then $\lim_{x \to 0} \frac{f(x)}{x^2} = \lim_{x \to 0} \frac{f(x)}{x^2} =$

(A)
$$-1$$
 (B) 0 (C) 3

Solution:
$$\frac{f(x)}{x^2} = \frac{1}{x^2} \begin{vmatrix} \cos x & x & 1 \\ 2\sin x & x & 2x \\ \sin x & x & x \end{vmatrix} = \begin{vmatrix} \cos x & x & 1 \\ \frac{2\sin x}{x} & 1 & 2 \\ \frac{\sin x}{x} & 1 & 1 \end{vmatrix}$$

$$\lim_{x \to 0} \frac{f(x)}{x^2} = \begin{vmatrix} 1 & 0 & 1 \\ 2 & 1 & 2 \\ 1 & 1 & 1 \end{vmatrix} = 1(1-2) + 1(2-1) = 0$$

Aliter: Without using properties of determinants:

$$f(x) = \cos x \cdot (x^2 - 2x^2) - x(2x \sin x - 2x \sin x) + (2x \sin x - x \sin x) = -x^2 \cos x + x \sin x$$

$$\lim_{x \to 0} \frac{f(x)}{x} = \lim_{x \to 0} \left(-\cos x + \frac{\sin x}{x} \right) = -1 + 1 = 0$$

- 54. Which one of the following observations is correct for the features of logarithm function to any base b > 1?
 - (A) The domain of the logarithm function is R, the set of real numbers.
 - (B) The range of the logarithm function is R^+ , the set of all positive real numbers.
 - (C) The point (1, 0) is always on the graph of the logarithm function.
 - (D) The graph of the logarithm function is decreasing as we move from left to right. Ans. (C)

Solution: y = log x always satisfies (1, 0)

- 55. The function $f(x) = |\cos x|$ is
 - (A) everywhere continuous and differentiable
 - (B) everywhere confinuous but not differentiable at odd multiples of $\frac{\pi}{2}$
 - (C) neither continuous nor differentiable at $(2n + 1) \frac{\pi}{2}$, $n \in \mathbb{Z}$
 - (D) not differentiable everywhere Ans. (B)

Solution: We know that |f(x)| is continuous whenever f(x) is continuous but not differentiable whenever f(x) = 0

Here $f(x) = \cos x$ and hence $|\cos x|$ is continuous but not differentiable whenever $\cos x = 0$

i.e., when x is an odd multiple of $\frac{\pi}{2}$

56. If
$$y = 2x^{3x}$$
, then $\frac{dy}{dx}$ at $x = 1$ is

(A) 2 (B) 6 (C) 3 (D) 1
Solution:
$$y = 2 \cdot x^{3x} \Rightarrow \frac{dy}{dx} = 2 \left[x^{3x} \cdot \frac{d}{dx} (3x \log x) \right] = 2 \cdot x^{3x} \left[3 \cdot \log x + 3x \cdot \frac{1}{x} \right]$$

$$\therefore$$
 At $x = 1, \frac{dy}{dx} = 2.1.(3 \log 1 + 3) = 6$

57. Let the function satisfy the equation f(x + y) = f(x) f(y) for all $x, y \in R$, where $f(0) \neq 0$. If f(5) = 3and f'(0) = 2, then f'(5) is

$$(B)$$
 0

$$(D) - 6$$

(A) 6 (B) 0 (C) 5 (D)
$$-6$$
 Solution: $f(x + y) = f(x) f(y)$. Then $f(x)$ can be a^x ; $f(5) = a^5 = 3$

Then
$$f'(x) = a^x \log a$$
; $f'(0) = 2 \Rightarrow \log a = 2$

$$f'(5) = a^5 \log a = 3(2) = 6$$

Aliter:
$$f(x + 5) = f(x)$$
. $f(5) \Rightarrow f'(x + 5) = f'(x)$. $f(5)$

Put
$$x = 0$$
: $f'(5) = f'(0)$. $f(5) = 2 \times 3 = 6$

Third method:

$$\begin{split} f'(5) &= \lim_{h \to 0} \frac{f(5+h) - f(5)}{h}; \ f(0) = 1 \\ &= \lim_{h \to 0} \ \frac{f(5) \cdot f(h) - f(5)}{h} = \lim_{h \to 0} f(5) \cdot \frac{f(h) - 1}{h} = f(5) \cdot f'(0) = 6 \end{split}$$

58. The value of C in (0, 2) satisfying the mean value theorem for the function $f(x) = x(x-1)^2$, $x \in [0, 1]$ 2] is equal to

(A)
$$\frac{3}{4}$$

(B)
$$\frac{4}{3}$$

(C)
$$\frac{1}{3}$$

(D)
$$\frac{2}{3}$$

Solution:
$$f'(x) = 1 \cdot (x-1)^2 + x \cdot 2(x-1) = x^2 - 2x + 1 + 2x^2 - 2x = 3x^2 - 4x + 1$$

(A)
$$\frac{3}{4}$$
 (B) $\frac{4}{3}$ (C) $\frac{1}{3}$ (D) $\frac{2}{3}$ An Solution: $f'(x) = 1 \cdot (x-1)^2 + x \cdot 2(x-1) = x^2 - 2x + 1 + 2x^2 - 2x = 3x^2 - 4x + 1$
 $f'(c) = \frac{f(2) - f(0)}{2 - 0} \Rightarrow 3c^2 - 4c + 1 = \frac{2 - 0}{2 - 0} = 1 \Rightarrow c(3c - 4) = 0 \Rightarrow c = \frac{4}{3} \in (0, 2)$

Remark: This is from DELETED Syllabus.

59.
$$\frac{d}{dx} \left[\cos^2 \left(\cot^{-1} \sqrt{\frac{2+x}{2-x}} \right) \right]$$
 is

$$(A) - \frac{3}{4}$$

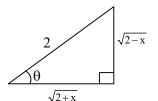
(B)
$$-\frac{1}{2}$$

(C)
$$\frac{1}{2}$$

(D)
$$\frac{1}{4}$$

Solution:
$$\cot^{-1} \sqrt{\frac{2+x}{2-x}} = \theta \Rightarrow \cot \theta = \frac{\sqrt{2+x}}{\sqrt{2-x}}$$

$$y = \cos^2 \left[\cot^{-1} \sqrt{\frac{2+x}{2-x}} \right] = \cos^2 \theta = \frac{2+x}{4} : \frac{dy}{dx} = \frac{1}{4}$$



Aliter: put
$$x = 2 \cos \theta$$
. Then $\frac{2+x}{2-x} = \frac{2(1+\cos \theta)}{2(1-\cos \theta)} = \cot^2 \frac{\theta}{2}$

$$\therefore y = \cos^2\left(\cot^{-1}\cot\frac{\theta}{2}\right) = \cos^2\frac{\theta}{2} = \frac{1}{2}\left(1 + \cos\theta\right) = \frac{1}{2}\left(1 + \frac{x}{2}\right) \implies y' = \frac{1}{4}$$

- 60. For the function $f(x) = x^3 6x^2 + 12x 3$; x = 2 is
 - (A) a point of minimum
- (B) a point of inflexion
- (C) not a critical point
- (D) a point of maximum
- Ans. (B)

Solution:
$$f'(x) = 3x^2 - 12x + 12$$
; $f''(x) = 6x - 12$; $f'''(x) = 6 \neq 0$

$$f'(2) = 0 = f''(2)$$
 : $x = 2$ is a point of inflexion.